Jump to ContentJump to Main Navigation
Show Summary Details

Opto-Electronics Review

Editor-in-Chief: Jaroszewicz, Leszek


IMPACT FACTOR 2015: 1.611
Rank 98 out of 255 in category Electrical & Electronic Engineering and 43 out of 90 in Optics in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 0.624
Source Normalized Impact per Paper (SNIP) 2015: 1.387
Impact per Publication (IPP) 2015: 1.564

99,00 € / $149.00 / £75.00*

Online
ISSN
1896-3757
See all formats and pricing



Select Volume and Issue
Loading journal volume and issue information...

Thermal management of GaInNAs/GaAs VECSELs

181Institute of Physics, Lodz University of Technology, 219 Wólczańska Str., 90-924, Łódź, Poland

© 2013 SEP, Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Opto-Electronics Review. Volume 21, Issue 2, Pages 191–198, ISSN (Online) 1896-3757, DOI: 10.2478/s11772-013-0081-y, March 2013

Publication History

Published Online:
2013-03-15

Abstract

Different methods used to reduce temperature increase within the active region of vertical-external-cavity surface-emitting lasers (VECSELs) are described and compared with the aid of the self-consistent thermal finite-element method. Simulations have been carried out for the GaInNAs/GaAs multiple-quantum-well (MQW) VECSEL operating at room temperature at 1.31 μm. Main results are presented in form of ‘thermal maps’ which can be simply used to determine maximal temperature of different structures at specified pumping conditions. It has been found that these maps are also appropriate for some other GaAs-based VECSELs and can be very helpful especially during structure designing. Moreover, convective and thermal radiation heat transfer from laser walls has been investigated.

Keywords: thermal management; VECSEL; semiconductor disk laser; SDL; GaInNAs; InGaAs

  • [1] M. Kuznetsov, “VECSEL semiconductor lasers: a path to high-power, quality beam and UV to IR wavelength by design”, in Semiconductor Disk Lasers: Physics and Technology, pp. 1–71, edited by Wiley-VCH Verlag, Weinheim, 2010. http://dx.doi.org/10.1002/9783527630394.ch1 [CrossRef]

  • [2] W. Nakwaski, “VCSEL structures used to suppress higher-order transverse modes”, Opto-Electron. Rev. 19, 119–129 (2011). http://dx.doi.org/10.2478/s11772-010-0075-y [Web of Science] [CrossRef]

  • [3] H. Lindberg, M. Strassner, E. Gerster, J. Bengtsson, and A. Larsson, “Thermal management of optically pumped long-wavelength inp-based semiconductor disk lasers”, IEEE J. Sel. Top. Quantum Electron. 11, 1126–1134 (2005). http://dx.doi.org/10.1109/JSTQE.2005.853730 [CrossRef]

  • [4] P. Millar, R.B. Birch, A.J. Kemp, and D. Burns, “Synthetic diamond for intracavity thermal management in compact solid-state lasers”, IEEE J. Quantum Electron. 44, 709–717 (2008). http://dx.doi.org/10.1109/JQE.2008.923424 [CrossRef] [Web of Science]

  • [5] A.J. Kemp, J.-M. Hopkins, A.J. Maclean, N. Schulz, M. Rattunde, J. Wagner, and D. Burns, “Thermal management in 2.3-μm semiconductor disk lasers: a finite element analysis”, IEEE J. Quantum Electron. 44, 125–135 (2008). http://dx.doi.org/10.1109/JQE.2007.911673 [CrossRef]

  • [6] A.J. Maclean, A.J. Kemp, S. Calvez, J.-Y. Kim, T. Kim, M.D. Dawson, and D. Burns, “Continuous tuning and efficient intracavity second-harmonic generation in a semiconductor disk laser with an intracavity diamond heatspreader”, IEEE J. Quantum Electron. 44, 216–225 (2008). http://dx.doi.org/10.1109/JQE.2007.911704 [Web of Science] [CrossRef]

  • [7] A.J. Kemp, G.J. Valentine, J.-M. Hopkins, J.E. Hastie, S.A. Smith, S. Calvez, M.D. Dawson, and D. Burns, “Thermal management in vertical-external-cavity surface-emitting lasers: finite-element analysis of a heatspreader approach”, IEEE J. Quantum Electron. 41, 148–155 (2005). http://dx.doi.org/10.1109/JQE.2004.839706 [CrossRef]

  • [8] A.J. Maclean, A.J. Kemp, and D. Burns, “Power-scaling of a 1060 nm semiconductor disk laser with a diamond heat-spreader”, in CLEO/QELS 2008, pp. 1–2, San Jose, 2008.

  • [9] A.J. Kemp, A.J. Maclean, J.E. Hasties, A. Smith, J.-M. Hopkins, S. Calvez, G.J. Valentinem, D. Dawson, and D. Burns, “Thermal lensing, thermal management and transverse mode control in microchip VECSELs”, Appl. Phys. B83, 189–194 (2006). http://dx.doi.org/10.1007/s00340-006-2151-z [CrossRef]

  • [10] J.-M. Hopkins, S.A. Smith, C.W. Jeon, H.D. Sun, D. Burns, S. Calvez, M.D. Dawson, T. Jouhti, and M. Pessa, “0.6 W CW GaInNAs vertical external-cavity surface emitting laser operating at 1.32 μm”, Electron. Lett. 40, 30–31 (2004). http://dx.doi.org/10.1049/el:20040049

  • [11] S.A. Smith, J.-M. Hopkins, J.E. Hastie, D. Burns, S. Calvez, M.D. Dawson, T. Jouhti, J. Kontinnen, and M. Pessa, “Diamond-microchip GaInNAs vertical external-cavity surface-emitting laser operating CW at 1315nm”, Electron. Lett. 40, 935–936 (2004). http://dx.doi.org/10.1049/el:20045378 [CrossRef]

  • [12] J. Lau and W. Dauksher, “Thermal stress analysis of a flip-chip parallel VCSEL (Vertical-Cavity Surface-Emitting Laser) package with low-temperature lead-free (48Sn-52In) solder joints”, in Proc. of 56th Electronic Components and Technology Conf., pp. 9–17, San Diego, 2006.

  • [13] K. Lee, K. Kim, and J.J. Yoh, “Modelling of high energy laser ignition of energetic materials”, J. Appl. Phys. 103, 083536-6 (2008).

  • [14] J.T. Cook, Y.K. Joshi, R. Doraiswami, “Interconnect thermal management of high power packaged electronic architectures”, in Twentieth Annual IEEE Semiconductor Thermal Measurement and Management Symp., pp. 30–37, San Jose, 2004.

  • [15] J. Peirs, D. Reynaerts, and H. Van Brussel, “Scale effects and thermal considerations for microactuators”, in Proc. of IEEE Int. Conf. on Robotics and Automation, pp. 1516–1521, Leuven, 1998.

  • [16] A. Amith, I. Kudman, and E.F. Steigmeier, “Electron and phonon scattering in GaAs at high temperature”, Phys. Rev. 138, A1270–A1276 (1965). http://dx.doi.org/10.1103/PhysRev.138.A1270 [CrossRef]

  • [17] S. Adachi, “GaAs, AlAs, and AlxGa1−x As: Materials parameters for use in research and device applications”, J. Appl. Phys. 58, R1–R29 (1985). http://dx.doi.org/10.1063/1.336070

  • [18] W. Nakwaski, “Thermal conductivity binary, ternary, and quaternary III-V compounds”, J. Appl. Phys. 64, 159–166 (1988). http://dx.doi.org/10.1063/1.341449 [CrossRef]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Jan Muszalski, Artur Broda, Artur Trajnerowicz, Anna Wójcik-Jedlińska, Robert P. Sarzała, Michał Wasiak, Piotr Gutowski, Iwona Sankowska, Justyna Kubacka-Traczyk, and Krystyna Gołaszewska-Malec
Optics Express, 2014, Volume 22, Number 6, Page 6447

Comments (0)

Please log in or register to comment.