Jump to ContentJump to Main Navigation
Show Summary Details

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Weir, Ron / Stohner, Jürgen


IMPACT FACTOR increased in 2015: 2.615
5-year IMPACT FACTOR: 3.127
Rank 60 out of 163 in category Chemistry, Multidisciplinary in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2014: 1.012
Source Normalized Impact per Paper (SNIP) 2014: 1.187
Impact per Publication (IPP) 2014: 2.785

249,00 € / $374.00 / £187.00*

Online
ISSN
1365-3075
See all formats and pricing

 


Select Volume and Issue
Loading journal volume and issue information...

20,00 € / $25.00 / £15.00

Get Access to Full Text

Nanophase materials by a novel microwave-hydrothermal process

Sridhar Komarneni1 / Hiroaki Katsuki2

1Materials Research Institute and Department of Crop and Soil Sciences, 205 Materials Research Laboratory, Pennsylvania State University, University Park, PA 16802, USA

2Saga Ceramics Research Laboratory, Saga 844-0024, Japan

Conference

IUPAC Workshop on Advanced Materials (WAM II), Workshop on Advanced Materials, WAM, Advanced Materials, 2nd, Bangalore, India, 2002-02-13–2002-02-16

Citation Information: Pure and Applied Chemistry. Volume 74, Issue 9, Pages 1537–1543, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: 10.1351/pac200274091537, January 2009

Publication History

Published Online:
2009-01-01

While there are many techniques for the production of nanophase materials, we have been using a hydrothermal process because it is a low-temperature method that can lead to energy savings. A recent innovation is the introduction of microwaves in the hydrothermal system, and we named this process the microwave-hydrothermal (M-H) process. M-H synthesis is a novel processing technology for the production of a variety of nanophase ceramic oxide and metal powders under closed-system conditions. This closed-system technology not only prevents pollution at its source, but also saves energy and, thus, could substantially reduce the cost of producing nanophase powders of all kinds. With several examples, the value of this technique is reviewed here. The M-H technique leads to (a) rapid heating to temperature of treatment, which can save energy and time; (b) increased reaction kinetics by one to two orders of magnitude, which also saves time and energy; (c) formation of novel phases; and (d) selective crystallization.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
A. Makridis, I. Chatzitheodorou, K. Topouridou, M.P. Yavropoulou, M. Angelakeris, and C. Dendrinou-Samara
Materials Science and Engineering: C, 2016
[2]
K. Sadhana, R. Sandhya, S.R. Murthy, and K. Praveena
Materials Science in Semiconductor Processing, 2015, Volume 40, Page 578
[4]
Sima Majidi, Fatemeh Zeinali Sehrig, Samad Mussa Farkhani, Mehdi Soleymani Goloujeh, and Abolfazl Akbarzadeh
Artificial Cells, Nanomedicine, and Biotechnology, 2014, Page 1
[5]
N Zahra, M Fayyaz, W Iqbal, M Irfan, and S Alam
IOP Conference Series: Materials Science and Engineering, 2014, Volume 60, Page 012056
[6]
Ying-Jie Zhu and Feng Chen
Chemical Reviews, 2014, Volume 114, Number 12, Page 6462
[7]
Ranjeet Kaur, Abshar Hasan, Nusrat Iqbal, Samsul Alam, Mahesh Kr Saini, and Syed Kalbe Raza
Journal of Separation Science, 2014, Volume 37, Number 14, Page 1805
[8]
Xiaofei Wu, Bin Yuan, Zongbi Bao, and Shuguang Deng
Journal of Colloid and Interface Science, 2014, Volume 430, Page 78
[9]
Cornelia Rosu, Sibel Selcuk, Erick Soto-Cantu, and Paul S. Russo
Colloid and Polymer Science, 2014, Volume 292, Number 5, Page 1009
[10]
Wanjun Wang, Shijing Liang, Kaining Ding, Jinhong Bi, Jimmy C. Yu, Po Keung Wong, and Ling Wu
Journal of Materials Science, 2014, Volume 49, Number 4, Page 1893
[11]
J.Z. Marinho, R.H.O. Montes, A.P. de Moura, E. Longo, J.A. Varela, R.A.A. Munoz, and R.C. Lima
Materials Research Bulletin, 2014, Volume 49, Page 572
[12]
K. Praveena and S.R. Murthty
Materials Research Bulletin, 2013, Volume 48, Number 11, Page 4826
[13]
Sridhar Komarneni, Sergio Esquivel, Young Dong Noh, Sonthikan Sitthisang, Jonggol Tantirungrotechai, Huihui Li, Shu Yin, Tsugio Sato, and Hiroaki Katsuki
Ceramics International, 2014, Volume 40, Number 1, Page 2097
[14]
Shun Li, Riad Nechache, Ivan Alejandro Velasco Davalos, Gregory Goupil, Liliya Nikolova, Mischa Nicklaus, Jonathan Laverdiere, Andreas Ruediger, Federico Rosei, and D. Damjanovic
Journal of the American Ceramic Society, 2013, Page n/a
[15]
Cuiyan Li, Yajun Wei, Anti Liivat, Yihua Zhu, and Jiefang Zhu
Materials Letters, 2013, Volume 107, Page 23
[16]
Ding Chen, Xiang Yi, Zhenhua Chen, Yingzhe Zhang, Biyu Chen, and Zhitao Kang
International Journal of Applied Ceramic Technology, 2014, Volume 11, Number 5, Page 954
[17]
Mehdi Sadat-Shojai, Mohammad-Taghi Khorasani, Ehsan Dinpanah-Khoshdargi, and Ahmad Jamshidi
Acta Biomaterialia, 2013, Volume 9, Number 8, Page 7591
[19]
Ding Chen, Yingzhe Zhang, and Zhitao Kang
Chemical Engineering Journal, 2013, Volume 215-216, Page 235
[20]
K. SADHANA, R. S. SHINDE, and S. R. MURTHY
International Journal of Modern Physics B, 2009, Volume 23, Number 17, Page 3637
[21]
Jun Geng and Guanghui Song
Journal of Materials Science, 2013, Volume 48, Number 2, Page 636
[23]
Hiroaki Katsuki, Sachiko Furuta, and Sridhar Komarneni
Materials Letters, 2012, Volume 83, Page 8
[24]
Dana Gingasu, Ioana Mindru, Luminita Patron, Gabriela Marinescu, Floriana Tuna, Silviu Preda, Jose Maria Calderon-Moreno, and Cristian Andronescu
Ceramics International, 2012, Volume 38, Number 8, Page 6739
[25]
Ding Chen, Yingzhe Zhang, and Chuanjun Tu
Materials Letters, 2012, Volume 82, Page 10
[26]
Ding Chen and YingZhe Zhang
Science China Technological Sciences, 2012, Volume 55, Number 6, Page 1535
[27]
Murukanahally Kempaiah Devaraju and Itaru Honma
Advanced Energy Materials, 2012, Volume 2, Number 3, Page 284
[28]
Franziska Conrad, Ying Zhou, Maxim Yulikov, Kathrin Hametner, Stephen Weyeneth, Gunnar Jeschke, Detlef Günther, Jan-Dierk Grunwaldt, and Greta R. Patzke
European Journal of Inorganic Chemistry, 2010, Volume 2010, Number 13, Page 2036
[29]
Meng Sun, Danzhen Li, Wenjuan Zhang, Zhixin Chen, Hanjie Huang, Wenjuan Li, Yunhui He, and Xianzhi Fu
Journal of Solid State Chemistry, 2012, Volume 190, Page 135
[30]
Laécio Santos Cavalcante, Júlio César Sczancoski, Rircado Luis Tranquilin, José Arana Varela, Elson Longo, and Marcelo Ornaghi Orlandi
Particuology, 2009, Volume 7, Number 5, Page 353
[31]
J.C. Sczancoski, L.S. Cavalcante, N.L. Marana, R.O. da Silva, R.L. Tranquilin, M.R. Joya, P.S. Pizani, J.A. Varela, J.R. Sambrano, M. Siu Li, E. Longo, and J. Andrés
Current Applied Physics, 2010, Volume 10, Number 2, Page 614
[32]
C.S. Xavier, J.C. Sczancoski, L.S. Cavalcante, C.O. Paiva-Santos, J.A. Varela, E. Longo, and M. Siu Li
Solid State Sciences, 2009, Volume 11, Number 12, Page 2173
[33]
L. S. Cavalcante, V. M. Longo, J. C. Sczancoski, M. A. P. Almeida, A. A. Batista, J. A. Varela, M. O. Orlandi, E. Longo, and M. Siu Li
CrystEngComm, 2012, Volume 14, Number 3, Page 853
[34]
K. Jamuna-Thevi, F.A. Zakaria, R. Othman, and S. Muhamad
Materials Science and Engineering: C, 2009, Volume 29, Number 5, Page 1732
[35]
V. Sreeja and P.A. Joy
Materials Research Bulletin, 2007, Volume 42, Number 8, Page 1570
[36]
Mirosław Zawadzki and Janina Okal
Materials Research Bulletin, 2008, Volume 43, Number 11, Page 3111
[37]
Xun Chen, Wanjun Wang, Xueyuan Chen, Jinhong Bi, Ling Wu, Zhaohui Li, and Xianzhi Fu
Materials Letters, 2009, Volume 63, Number 12, Page 1023
[38]
Mostafa Baghbanzadeh, Luigi Carbone, P. Davide Cozzoli, and C. Oliver Kappe
Angewandte Chemie International Edition, 2011, Volume 50, Number 48, Page 11312
[39]
Hongmei Ji, Gang Yang, Huan Ni, Soumyajit Roy, João Pinto, and Xuefan Jiang
Electrochimica Acta, 2011, Volume 56, Number 9, Page 3093
[40]
T. Ramesh, S. R. Murthy, and R. S. Shinde
Integrated Ferroelectrics, 2010, Volume 118, Number 1, Page 67
[41]
Franziska Conrad and Greta R. Patzke
Zeitschrift für anorganische und allgemeine Chemie, 2010, Volume 636, Number 11, Page 2070
[42]
Greta R. Patzke, Ying Zhou, Roman Kontic, and Franziska Conrad
Angewandte Chemie, 2011, Volume 123, Number 4, Page 852
[43]
Anukorn Phuruangrat, Dong Jin Ham, Suk Joon Hong, Somchai Thongtem, and Jae Sung Lee
J. Mater. Chem., 2010, Volume 20, Number 9, Page 1683
[44]
S. A. Eliziário, L. S. Cavalcante, J. C. Sczancoski, P. S. Pizani, J. A. Varela, J. W. M. Espinosa, and E. Longo
Nanoscale Research Letters, 2009, Volume 4, Number 11, Page 1371
[45]
Purnendu Parhi, Jon Kramer, and V. Manivannan
Journal of Materials Science, 2008, Volume 43, Number 16, Page 5540
[46]
Ion Teoreanu, Maria Preda, and Alina Melinescu
Journal of Materials Science: Materials in Medicine, 2008, Volume 19, Number 2, Page 517
[47]
E. K. GIRIJA, S. P. PARTHIBAN, R. V. SUGANTHI, K. ELAYARAJA, M. I. A. JOSHY, R. VANI, P. KULARIA, K. ASOKAN, D. KANJILAL, Y. YOKOGAWA, and S. NARAYANA KALKURA
Journal of the Ceramic Society of Japan, 2008, Volume 116, Number 1350, Page 320
[48]
Hanna Grabowska, Mirosław Zawadzki, and Ludwik Syper
Catalysis Letters, 2008, Volume 121, Number 1-2, Page 103
[49]
V. Seetha Rama Raju, S. R. Murthy, F. Gao, Q. Lu, and S. Komarneni
Journal of Materials Science, 2006, Volume 41, Number 5, Page 1475
[50]
Juncheng Liu, Gaowu Qin, Poovathinthodiyil Raveendran, and Yukata Ikushima
Chemistry - A European Journal, 2006, Volume 12, Number 8, Page 2131
[51]
Weixiang Chen, Jie Zhao, Jim Yang Lee, and Zhaolin Liu
Chemistry Letters, 2004, Volume 33, Number 4, Page 474
[52]
Sridhar Komarneni, Hiroaki Katsuki, Dongsheng Li, and Amar S Bhalla
Journal of Physics: Condensed Matter, 2004, Volume 16, Number 14, Page S1305
[53]
J. A. Heuser, W. U. Spendel, A. N. Pisarenko, C. Yu, M. J. Pechan, and G. E. Pacey
Journal of Materials Science, 2007, Volume 42, Number 21, Page 9057

Comments (0)

Please log in or register to comment.