Organometallic precursor route to carbon nanotubes : Pure and Applied Chemistry uses cookies, tags, and tracking settings to store information that help give you the very best browsing experience.
To understand more about cookies, tags, and tracking, see our Privacy Statement
I accept all cookies for the De Gruyter Online site

Jump to ContentJump to Main Navigation

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Weir, Ron / Stohner, Jürgen

IMPACT FACTOR 2014: 2.492
5-year IMPACT FACTOR: 3.202
Rank 51 out of 157 in category Chemistry, Multidisciplinary in the 2014 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2014: 1.012
Source Normalized Impact per Paper (SNIP) 2014: 1.187
Impact per Publication (IPP) 2014: 2.785



Organometallic precursor route to carbon nanotubes

A. Govindaraj1 / C. N. R. Rao1

1Chemistry and Physics of Materials Unit and CSIR Center of Excellence in Chemistry, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bangalore 560 064, India


IUPAC Workshop on Advanced Materials (WAM II), Workshop on Advanced Materials, WAM, Advanced Materials, 2nd, Bangalore, India, 2002-02-13–2002-02-16

Citation Information: Pure and Applied Chemistry. Volume 74, Issue 9, Pages 1571–1580, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: 10.1351/pac200274091571, January 2009

Publication History

Published Online:

Multi-walled as well as single-walled carbon nanotubes are conveniently prepared by the pyrolysis of organometallic precursors, such as metallocenes and phthalocyanines, in a reducing atmosphere. Pyrolysis of organometallics alone or in mixture with hydrocarbons also yields aligned nanotube bundles with useful field emission properties. By pyrolyzing organometallics in the presence of thiophene, Y-junction nanotubes are obtained in large quantities. The junction nanotubes have a good potential in nanoelectronics. Carbon nano-tubes prepared from organometallics are useful for preparing nanowires and nanotubes of materials such as BN, GaN, SiC, and Si3N4.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Vijayshankar Asokan, Velaug Myrseth, and Pawel Kosinski
Journal of Physics and Chemistry of Solids, 2015, Volume 81, Page 106
Garima Mittal, Vivek Dhand, Kyong Yop Rhee, Soo-Jin Park, and Wi Ro Lee
Journal of Industrial and Engineering Chemistry, 2015, Volume 21, Page 11
G. Alonso-Núñez, C. Belman, I. Gradilla, B. Arango, Y. Gochi-Ponce, R.M. Félix, E. Reynoso, and J. Lara-Romero
Materials Letters, 2013, Volume 109, Page 163
Shahid Nisar Ahmad, Saira Hakeem, Rashid Ahmed Alvi, Khawar Farooq, Naveed Farooq, Farida Yasmin, and Sadaf Saeed
Journal of Physics: Conference Series, 2013, Volume 439, Page 012009
J I Ayuso, E Hernández, and E Delgado
IOP Conference Series: Materials Science and Engineering, 2013, Volume 45, Page 012001
P. González-García, E. Urones-Garrote, D. Ávila-Brande, and L.C. Otero-Díaz
Journal of Organometallic Chemistry, 2013, Volume 740, Page 141
Vijayshankar Asokan, Dhayalan Velauthapillai, Reidar Løvlie, and Dorte Nørgaard Madsen
Journal of Materials Science: Materials in Electronics, 2013, Volume 24, Number 9, Page 3231
Fahad S. Al-Mubaddel, Sajjad Haider, Waheed A. Al-Masry, Yousef Al-Zeghayer, Muhammad Imran, Adnan Haider, and Zahoor Ullah
Arabian Journal of Chemistry, 2012
Shahana Chatterjee, Myung Jong Kim, Dmitri N. Zakharov, Seung Min Kim, Eric A. Stach, Benji Maruyama, and Larry G. Sneddon
Chemistry of Materials, 2012, Volume 24, Number 15, Page 2872
P. Ojeda-May, M. Terrones, H. Terrones, D. Hoffman, T. Proffen, and A.K. Cheetham
Diamond and Related Materials, 2007, Volume 16, Number 3, Page 473
P. Mahanandia, P.N. Vishwakarma, K.K. Nanda, V. Prasad, K. Barai, A.K. Mondal, S. Sarangi, G.K. Dey, and S.V. Subramanyam
Solid State Communications, 2008, Volume 145, Number 3, Page 143
Guixiang Du, Jianghong Zhao, Jinling Song, Shouai Feng, Chang Song, and Zhenping Zhu
Chemical Physics Letters, 2009, Volume 468, Number 1-3, Page 57
Edward N. Nxumalo, Vincent O. Nyamori, and Neil J. Coville
Journal of Organometallic Chemistry, 2008, Volume 693, Number 17, Page 2942
Edward N. Nxumalo, Vongani P. Chabalala, Vincent O. Nyamori, Michael J. Witcomb, and Neil J. Coville
Journal of Organometallic Chemistry, 2010, Volume 695, Number 10-11, Page 1451
Jasmin Blanchard, Hicham Oudghiri-Hassani, Nicolas Abatzoglou, Sepideh Jankhah, and François Gitzhofer
Chemical Engineering Journal, 2008, Volume 143, Number 1-3, Page 186
Feng Zheng, Akella Sivaramakrishna, and John R. Moss
Coordination Chemistry Reviews, 2007, Volume 251, Number 15-16, Page 2056
Tapan K. Rout, Anil V. Gaikwad, Vincent Lee, and Sarbajit Banerjee
Journal of Materials Research, 2011, Volume 26, Number 06, Page 837
Vivekanantan S. Iyer, K. Peter C. Vollhardt, and René Wilhelm
Angewandte Chemie International Edition, 2003, Volume 42, Number 36, Page 4379
A. S. Manukyan, A. A. Mirzakhanyan, G. R. Badalyan, G. H. Shirinyan, and E. G. Sharoyan
Journal of Contemporary Physics (Armenian Academy of Sciences), 2010, Volume 45, Number 3, Page 132
Panagiotis Dallas, Athanasios B. Bourlinos, Philomela Komninou, Michael Karakassides, and Dimitrios Niarchos
Nanoscale Research Letters, 2009, Volume 4, Number 11, Page 1358
Pitamber Mahanandia and Karuna Kar Nanda
Nanotechnology, 2008, Volume 19, Number 15, Page 155602
Zhonglai Li, Jing Zhang, Ying Li, Yejun Guan, Zhaochi Feng, and Can Li
Journal of Materials Chemistry, 2006, Volume 16, Number 14, Page 1350
A. Govindaraj and C. N. R. Rao
ChemInform, 2003, Volume 34, Number 17
S. R. C. Vivekchand and A. Govindaraj
Journal of Chemical Sciences, 2003, Volume 115, Number 5-6, Page 509

Comments (0)

Please log in or register to comment.