Jump to ContentJump to Main Navigation

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Weir, Ron / Stohner, Jürgen

12 Issues per year

Increased IMPACT FACTOR 2012: 3.386
Rank 40 out of 152 in category Multidisciplinary Chemistry in the 2012 Thomson Reuters Journal Citation Report/Science Edition

Access brought to you by:

provisional account

VolumeIssuePage

Issues

Understanding solvation

Omar A. El Seoud1

1Institute of Chemistry, University of São Paulo, C.P. 26077, 05513-970, São Paulo, S. P., Brazil

Citation Information: Pure and Applied Chemistry. Volume 81, Issue 4, Pages 697–707, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: 10.1351/PAC-CON-08-09-27, January 2009

Publication History

Published Online:
2009-01-01

The effects of solvents on different chemical phenomena, including reactivity, spectroscopic data, and swelling of biopolymers can be rationalized by use of solvatochromic probes, substances whose UV-vis spectra, absorption, or emission are sensitive to the properties of the medium. Thermo-solvatochromism refers to the effect of temperature on solvatochromism. The study of both phenomena sheds light on the relative importance of the factors that contribute to solvation, namely, properties of the probe, those of the solvent (acidity, basicity, dipolarity/polarizability, and lipophilicity), and the temperature. Solvation in binary solvent mixtures is complex because of "preferential solvation" of the probe by one component of the mixture. A recently introduced solvent exchange model is based on the presence in the binary solvent mixture of the organic component (molecular solvent or ionic liquid), S, water, W, and a 1:1 hydrogen-bonded species (S-W). Solvation by the latter is more efficient than by its precursor solvents, due to probe-solvent hydrogen-bonding and hydrophobic interactions; dimethyl sulfoxide (DMSO)-W is an exception. Solvatochromic data are employed in order to explain apparently disconnected phenomena, namely, medium effect on the pH-independent hydrolysis of esters, 1H NMR data of water-ionic liquid (IL) mixtures, and the swelling of cellulose.

Keywords: effects of media; effects of solvents; reactivity; solvation, mechanism of; solvatochromism; spectroscopy; thermo-solvatochromism

References

  • 1

    2013, 1, 45, S. 59 [CrossRef], Harifi-MoodAli Reza, Mousavi-TekmedashAli, International Journal of Chemical Kinetics, Int. J. Chem. Kinet., 05388066, Linear and nonlinear free energy relationships in nucleophilic substitution reaction of 2-bromo-5-nitrothiophene with morpholine

  • 2

    2013, 3, 26, S. 280 [CrossRef], PiresPaulo A. R., ImranMuhammad, LoffredoCarina, DonatePaulo M., PrevidiDaniel, El SeoudOmar A., Journal of Physical Organic Chemistry, J. Phys. Org. Chem., 08943230, Solvatochromism of 2-(N,N-dimethylamino)-7-nitrofluorene and the natural dye β-carotene: application for the determination of solvent dipolarity and polarizability

  • 3

    2013, None, None, S. None [CrossRef], El GuesmiNizar, BerionniGuillaume, AsgharBasim H., Monatshefte für Chemie - Chemical Monthly, Monatsh Chem, 0026-9247, Electronic and solvent effects on kinetics of SNAr substitution reactions of substituted anilines with 2,6-bis(trifluoromethanesulfonyl)-4-nitroanisole in MeOH–Me2SO mixtures of varying composition: one reaction with two mechanistic pathways

  • 4

    2013, 2, 19, S. 689 [CrossRef], DomínguezMoisés Elías, RezendeMarcos Caroli, MárquezSebastián, Journal of Molecular Modeling, J Mol Model, 1610-2940, Theoretical study of the solvatochromism of a donor-acceptor bithiophene

  • 5

    2013, 1, 93, S. 129 [CrossRef], FidaleLudmila C., HeinzeThomas, El SeoudOmar A., Carbohydrate Polymers, Carbohydrate Polymers, 01448617, Perichromism: A powerful tool for probing the properties of cellulose and its derivatives

  • 6

    2013, 1, 96, S. 16 [CrossRef], LoffredoCarina, PiresPaulo Augusto R., ImranMuhammad, El SeoudOmar A., Dyes and Pigments, Dyes and Pigments, 01437208, β-Carotene: A green, inexpensive, and convenient solvatochromic probe for the determination of solvent polarizability

  • 7

    2013, 4, 51, S. 447 [CrossRef], SayadianMasumeh, FarajtabarAli, Physics and Chemistry of Liquids, Physics and Chemistry of Liquids, 0031-9104, Deprotonation of para-sulphonatocalix[4]arene in water–methanol mixtures

  • 8

    2012, 1, 19, S. 151 [CrossRef], FidaleLudmila C., LimaPaulo M., HortêncioLucas M. A., PiresPaulo A. R., HeinzeThomas, El SeoudOmar A., Cellulose, None, 1572882X, Employing perichromism for probing the properties of carboxymethyl cellulose films: an expedient, accurate method for the determination of the degree of substitution of the biopolymer derivative

  • 9

    2012, None, 100, S. 414 [CrossRef], KumarKeshav, MishraAshok Kumar, Talanta, Talanta, 00399140, Quantification of ethanol in petrol–ethanol blends: Use of Reichardt's ET(30) dye in introducing a petrol batch independent calibration procedure

  • 10

    2012, 23, 77, S. 10668 [CrossRef], NandiLeandro G., FacinFelipe, MariniVanderléia G., ZimmermannLizandra M., GiustiLuciano A., SilvaRobson da, CaramoriGiovanni F., MachadoVanderlei G., The Journal of Organic Chemistry, J. Org. Chem., 0022-3263, Nitro-Substituted 4-[(Phenylmethylene)imino]phenolates: Solvatochromism and Their Use as Solvatochromic Switches and as Probes for the Investigation of Preferential Solvation in Solvent Mixtures

  • 11

    2012, 8, 116, S. 2483 [CrossRef], BurkeKathryn, RiccardiCaterina, ButheleziThandi, The Journal of Physical Chemistry B, Chem B, 15205207, Thermosolvatochromism of Nitrospiropyran and Merocyanine Free and Bound to Cyclodextrin

  • 12

    2012, 5, 116, S. 1687 [CrossRef], VincentMichel, GallayJacques, The Journal of Physical Chemistry B, Chem B, 15205207, Water Gradient in the Membrane–Water Interface: A Time-Resolved Study of the Series of n-(9-Anthroyloxy) Stearic Acids Incorporated in AOT/Water/iso-octane Reverse Micelles

  • 13

    2012, 11, 36, S. 2353 [CrossRef], SatoBruno M., MartinsClarissa T., El SeoudOmar A., New Journal of Chemistry, New J. Chem., 1144-0546, Solvation in aqueous binary mixtures: consequences of the hydrophobic character of the ionic liquids and the solvatochromic probes

  • 14

    2012, 4, 10, S. 1318 [CrossRef], PushkarovaYaroslava, KholinYuriy, Central European Journal of Chemistry, cent.eur.j.chem., 1895-1066, The classification of solvents based on solvatochromic characteristics: the choice of optimal parameters for artificial neural networks

  • 15

    2012, 5, 10, S. 1600 [CrossRef], SalmarSiim, JärvJaak, TennoTiina, TuulmetsAnts, Central European Journal of Chemistry, cent.eur.j.chem., 1895-1066, Role of water in determining organic reactivity in aqueous binary solvents

  • 16

    2011, 4, 43, S. 185 [CrossRef], Harifi-MoodAli Reza, RahmatiMasoud, GholamiMohammad Reza, International Journal of Chemical Kinetics, Int J Chem Kinet, 10974601, Solvent polarity and hydrogen bond effects on nucleophilic substitution reaction of 2-bromo-5-nitrothiophene with piperidine

  • 17

    2011, 23, 212, S. 2541 [CrossRef], El SeoudOmar A., da SilvaValdinéia C., PossidonioShirley, CasaranoRomeu, ArêasElizabeth P. G., GimenesPaula, Macromolecular Chemistry and Physics, Macromolecular Chem Phys, 15213935, Microwave-Assisted Derivatization of Cellulose, 2 - The Surprising Effect of the Structure of Ionic Liquids on the Dissolution and Acylation of the Biopolymer

  • 18

    2011, 11, 24, S. 1095 [CrossRef], Jamali-PaghalehJavad, Harifi-MoodAli Reza, GholamiMohammad Reza, Journal of Physical Organic Chemistry, J  Phys Org Chem, 10991395, Reaction kinetics investigation of 1-fluoro-2,4-dinitrobenzene with substituted anilines in ethyl acetate-methanol mixtures using linear and nonlinear free energy relationships : ETHYL ACETATE-METHANOL MIXTURES

  • 19

    2011, 1, 83, S. 213 [CrossRef], FarajtabarAli, JaberiFatemeh, GharibFarrokh, Spectrochimica Acta Part A Molecular and Biomolecular Spectroscopy, Spectochim Acta A, 13861425, Preferential solvation and solvation shell composition of free base and protonated 5, 10, 15, 20-tetrakis(4-sulfonatophenyl)porphyrin in aqueous organic mixed solvents

  • 20

    2011, 9, 88, S. 1293 [CrossRef], El SeoudOmar A., LoffredoCarina, GalganoPaula D., SatoBruno M., ReichardtChristian, Journal of Chemical Education, J Chem Ed, 19381328, Have Biofuel, Will Travel: A Colorful Experiment and a Different Approach To Teach the Undergraduate Laboratory

  • 21

    2011, 34, 115, S. 10259 [CrossRef], LealJosé M., NavarroAna M., GarcíaBegoña, HoyuelosFrancisco J., PeñacobaIndalecio A., The Journal of Physical Chemistry B, Chem B, 15205207, Preferential Solvation in Alkan-1-ol/Alkylbenzoate Binary Mixtures by Solvatochromic Probes

  • 22

    2010, 5, 17, S. 937 [CrossRef], FidaleLudmila C., IßbrückerConstance, SilvaPriscilla L., LuchetiCamila M., HeinzeThomas, El SeoudOmar A., Cellulose, None, 1572882X, Probing the dependence of the properties of cellulose acetates and their films on the degree of biopolymer substitution: use of solvatochromic indicators and thermal analysis

  • 23

    2010, 1, 345, S. 1 [CrossRef], GalganoPaula D., El SeoudOmar A., Journal of Colloid and Interface Science, Journal of Colloid and Interface Science, 00219797, Micellar properties of surface active ionic liquids: A comparison of 1-hexadecyl-3-methylimidazolium chloride with structurally related cationic surfactants

  • 24

    2010, 8, 12, S. 1991 [CrossRef], PalomarJosé, TorrecillaJosé S., LemusJesús, FerroVíctor R., RodríguezFrancisco, Physical Chemistry Chemical Physics, Phys Chem Chem Phys, 14639084, A COSMO-RS based guide to analyze/quantify the polarity of ionic liquids and their mixtures with organic cosolvents

  • 25

    2010, 8, 12, S. 1764 [CrossRef], SatoBruno M., de OliveiraCarolina G., MartinsClarissa T., El SeoudOmar A., Physical Chemistry Chemical Physics, Phys Chem Chem Phys, 14639084, Thermo-solvatochromism in binary mixtures of water and ionic liquids: on the relative importance of solvophobic interactions

  • 26

    2010, 12, 12, S. 2981 [CrossRef], SaielliGiacomo, BagnoAlessandro, Physical Chemistry Chemical Physics, Phys Chem Chem Phys, 14639084, Preferential solvation of glucose and talose in water–acetonitrile mixtures: a molecular dynamics simulation study

  • 27

    2010, 42, 12, S. 14144 [CrossRef], PensackRyan D., BanyasKyle M., AsburyJohn B., Physical Chemistry Chemical Physics, Phys Chem Chem Phys, 14639084, Vibrational solvatochromism in organic photovoltaic materials: method to distinguish molecules at donor/acceptor interfaces

  • 1. (a)

    doi:10.1021/jo970070x, O. A. El Seoud, M. I. El Seoud, J. P. S. Farah. J. Org. Chem. 62, 5928 (1997); [CrossRef]

  • 1. (b)

    doi:10.1002/poc.1081, O. A. El Seoud, F. Siviero. J. Phys. Org. Chem. 19, 793 (2006). [CrossRef]

  • 2.

    doi:10.3891/acta.chem.scand.30a-0673, S. Sorensen. Acta Chem. Scand. A 30, 673 (1976). [CrossRef]

  • 3. (a)

    doi:10.1021/jp8017474, C. T. Martins, B. M. Sato, O. A. El Seoud. J. Phys. Chem. B 112, 8330 (2008); [CrossRef]

  • 3. (b)

    C. T. Martins. Ph.D. Thesis, Institute of Chemistry, University of Sao Paulo (2007).

  • 4. (a)

    doi:10.1016/0301-0104(75)85022-1, A. Coccia, P. L. Indovina, F. Podo, V. Viti. Chem. Phys. 7, 30 (1975); [CrossRef]

  • 4. (b)

    doi:10.1021/j100010a014, K. Mizuno, K. Oda, S. Maeda, Y. Shindo, A. Okamura. J. Phys. Chem. 99, 3056 (1995); [CrossRef]

  • 4. (c)

    doi:10.1021/jp960194y, K. Mizuno, K. Oda, Y. Shindo, A. Okumura. J. Phys. Chem. 100, 10310 (1996). [CrossRef]

  • 5.

    doi:10.1007/b136818, O. A. El Seoud, T. Heinze. Adv. Polym. Sci. 186, 103 (2005). [CrossRef]

  • 6.

    doi:10.1002/3527601929.ch2c, D. Klemm, B. Philipp, T. Heinze, U. Heinze, W. Wagenknecht. Comprehensive Cellulose Chemistry, Vol. 1, pp. 43-56, Wiley-VCH, Weinheim (1998). [CrossRef]

  • 7.

    doi:10.1007/s10570-007-9189-x, O. A. El Seoud, L. C. Fidale, N. Ruiz, M.-L. O. D'Almeida, E. Frollini. Cellulose 15, 371 (2008). [CrossRef]

  • 8. (a)

    C. Reichardt. Solvents and Solvent Effects in Organic Chemistry, 3rd ed., p. 5, 329, 389, VCH, Weinheim (2003);

  • 8. (b)

    doi:10.1351/pac200476101903, C. Reichardt. Pure Appl. Chem. 76, 1903 (2004); [CrossRef]

  • 8. (c)

    doi:10.1351/pac200880071415, C. Reichardt. Pure Appl. Chem. 80, 1415 (2008). [CrossRef]

  • 9. (a)

    doi:10.1002/9780470171929.ch6, M. J. Kamlet, R. W. Taft. Prog. Phys. Org. Chem. 13, 485 (1981); [CrossRef]

  • 9. (b)

    doi:10.1139/v88-420, M. H. Abraham, P. L. Grellier, J.-L. M Abboud, R. M. Doherty, R. W. Taft. Can. J. Chem. 66, 2673 (1988); [CrossRef]

  • 9. (c)

    doi:10.1021/j100074a003, C. Laurence, P. Nicolet, M. T. Dalati, J.-L. M Abboud, R. Notario. J. Phys. Chem. 98, 5807 (1994). [CrossRef]

  • 10.

    doi:10.1021/jp8067552, P. L. Silva, P. A. R. Pires, M. A. S. Trassi, O. A. El Seoud. J. Phys. Chem. B 112, 14976 (2008). [CrossRef]

  • 11.

    doi:10.1023/A:1008762321231, A. J. Leo, C. Hansch. Perspect. Drug Discov. Des. 17, 1 (1999). [CrossRef]

  • 12. (a)

    J. Catalan, C. Diaz. Liebigs Annal. Rec. 1941 (1997);

  • 12. (b)

    doi:10.1002/(SICI)1099-0690(199904)1999:4<885::AID-EJOC885>3.0.CO;2-W, J. Catalan, C. Diaz. Eur. J. Org. Chem. 885 (1999). [CrossRef]

  • 13.

    doi:10.1021/jo061533e, C. T. Martins, M. S. Lima, O. A. El Seoud. J. Org. Chem. 71, 9068 (2006). [CrossRef]

  • 14.

    doi:10.1039/f19868203097, J. G. Dawber, R. A. Williams. J. Chem. Soc., Faraday Trans. 1 82, 3097 (1986). [CrossRef]

  • 15. (a)

    doi:10.1021/jp709819n, A. Maitra, S. Bagchi. J. Phys. Chem. B 112, 2056 (2008); [CrossRef]

  • 15. (b)

    doi:10.1021/jp710874e, A. Maitra, S. Bagchi. J. Phys. Chem. B 112, 9847 (2008). [CrossRef]

  • 16. (a)

    doi:10.1016/0022-2860(72)80060-7, B. Z. Gorbunov, Yul. Naberukhin. J. Mol. Struct. 14, 113 (1972); [CrossRef]

  • 16. (b)

    doi:10.1007/BF00748082, B. Z. Gorbunov, Yul. Naberukhin. J. Struct. Chem. 16, 755 (1975); [CrossRef]

  • 16. (c)

    A. J. Easteal. Aust. J. Chem. 32, 1379 (1979);

  • 16. (d)

    S. Balakrishnan, A. J. Easteal. Aust. J. Chem. 34, 943 (1981);

  • 16. (e)

    doi:10.1016/0021-9614(82)90171-9, A. J. Easteal, L. A. Woolf. J. Chem. Thermodyn. 14, 755 (1982). [CrossRef]

  • 17.

    Y. Marcus. Monatsh. Chem. 132, 1387 (2001) and refs. cited therein.

  • 18. (a)

    doi:10.1039/ft9928803541, E. Bosch, M. Roses. J. Chem. Soc., Faraday Trans. 88, 3541 (1992); [CrossRef]

  • 18. (b)

    doi:10.1039/p29950001607, M. Roses, C. Rafols, J. Ortega, E. Bosch. J. Chem. Soc., Perkin Trans. 2 1607 (1995). [CrossRef]

  • 19. (a)

    doi:10.1002/mrc.1260250705, L. F. Shen, Y. R. Du, Q. F. Shao, S. Z. Mao. Magn. Reson. Chem. 25, 575 (1987); [CrossRef]

  • 19. (b)

    doi:10.1039/ft9949000429, J. S. Chen, J. C. Shiao. J. Chem. Soc., Faraday Trans. 90, 429 (1994); [CrossRef]

  • 19. (c)

    doi:10.1021/jp952596w, F. Eblinger, H. J. Schneider. J. Phys. Chem. 100, 5533 (1996); [CrossRef]

  • 19. (d)

    doi:10.1139/v01-198, J. J. Max, S. Daneault, C. Chapados. Can. J. Chem. 80, 113 (2002). [CrossRef]

  • 20.

    doi:10.1007/BF00649038, J. F. Coetzee, A. Hussam. J. Solution Chem. 11, 395 (1982). [CrossRef]

  • 21. (a)

    doi:10.1002/poc.632, E. B. Tada, P. L. Silva, O. A. El Seoud. J. Phys. Org. Chem. 16, 691 (2003); [CrossRef]

  • 21. (b)

    doi:10.1039/b308550c, E. B. Tada, P. L. Silva, O. A. El Seoud. Phys. Chem. Chem. Phys. 5, 5378 (2003); [CrossRef]

  • 21. (c)

    doi:10.1002/poc.887, E. B. Tada, P. L. Silva, C. M. Tavares, O. A. El Seoud. J. Phys. Org. Chem. 18, 398 (2005); [CrossRef]

  • 21. (d)

    E. B. Tada. Ph.D. Thesis, Institute of Chemistry, University of Sao Paulo (2004).

  • 22.

    doi:10.1021/jp068596l, P. L. Silva, E. L. Bastos, O. A. El Seoud. J. Phys. Chem. B 111, 6173 (2007). [CrossRef]

  • 23.

    E. V. Anslyn, D. A. Dougherty. Modern Physical Organic Chemistry, pp. 355-412, University Science Books, Sausalito, CA (2006).

  • 24. (a)

    doi:10.1021/ar010070q, W. Leitner. Acc. Chem. Res. 35, 746 (2002); [CrossRef]

  • 24. (b)

    doi:10.1002/poc.863, C. Chiappe, D. Pieraccini. J. Phys. Org. Chem. 18, 275 (2005). [CrossRef]

Comments (0)

Please log in or register to comment.