Jump to ContentJump to Main Navigation

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Weir, Ron / Stohner, Jürgen

12 Issues per year

IMPACT FACTOR 2013: 3.112
Rank 41 out of 148 in category Multidisciplinary Chemistry in the 2013 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR): 1.172
Source Normalized Impact per Paper (SNIP): 1.106

VolumeIssuePage

Issues

Liquid intrusion and alternative methods for the characterization of macroporous materials (IUPAC Technical Report)

Jean Rouquerol1 / Gino Baron2 / Renaud Denoyel1 / Herbert Giesche3 / Johan Groen4 / Peter Klobes5 / Pierre Levitz6 / Alexander V. Neimark7 / Sean Rigby8 / Romas Skudas9 / Kenneth Sing10 / Matthias Thommes11 / Klaus Unger9

1LCP, CNRS-University Aix-Marseille, Marseille, France

2Vrije Universiteit Brussels, Brussels, Belgium

3NYSCC at Alfred University, Alfred, NY, USA

4Delft Solids Solutions B.V., Delft, The Netherlands

5BAM Bundesanstalt für Materialforschung und -prüfung, Berlin, Germany

6Ecole Polytechnique, Palaiseau, France

7Rutgers University, Piscataway, NJ, USA

8Bath University, Bath, UK

9Johannes Gutenberg University, Mainz, Germany

10Brunel University, Uxbridge, UK

11Quantachrome Instruments, Boynton Beach, FL, USA

Project Year: 2006, Project Code: 2006-021-2-100

Citation Information: Pure and Applied Chemistry. Volume 84, Issue 1, Pages 107–136, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: 10.1351/PAC-REP-10-11-19, December 2011

Publication History

Published Online:
2011-12-12

This document deals with the characterization of porous materials having pore widths in the macropore range of 50 nm to 500 μm. In recent years, the development of advanced adsorbents and catalysts (e.g., monoliths having hierarchical pore networks) has brought about a renewed interest in macropore structures. Mercury intrusion–extrusion porosimetry is a well-established method, which is at present the most widely used for determining the macropore size distribution. However, because of the reservations raised by the use of mercury, it is now evident that the principles involved in the application of mercury porosimetry require reappraisal and that alternative methods are worth being listed and evaluated. The reliability of mercury porosimetry is discussed in the first part of the report along with the conditions required for its safe use. Other procedures for macropore size analysis, which are critically examined, include the intrusion of other non-wetting liquids and certain wetting liquids, capillary condensation, liquid permeation, imaging, and image analysis. The statistical reconstruction of porous materials and the use of macroporous reference materials (RMs) are also examined. Finally, the future of macropore analysis is discussed.

Keywords: capillary condensation; image analysis; IUPAC Physical and Biophysical Chemistry Division; liquid intrusion; macroporous materials; mercury porosimetry; permeation; pore size characterization; reference porous materials; statistical reconstruction of porous solids

References

  • 1

    2013, None, 53, S. 90 [CrossRef], LalwaniGaurav, KwaczalaAndrea Trinward, KanakiaShruti, PatelSunny C., JudexStefan, SitharamanBalaji, Carbon, Carbon, 00086223, Fabrication and characterization of three-dimensional macroscopic all-carbon scaffolds

  • 2

    2013, None, None, S. None [CrossRef], DukhinA., SwaseyS., ThommesM., Colloids and Surfaces A: Physicochemical and Engineering Aspects, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 09277757, A method for pore size and porosity analysis of porous materials using electroacoustics and high frequency conductivity

  • 3

    2013, None, 8, S. 317 [CrossRef], VandevoordeDelphine, CnuddeVeerle, DewanckeleJan, BrabantLoes, de BouwMichael, MeynenVera, VerhaevenEddy, Procedia Chemistry, Procedia Chemistry, 18766196, Validation of in situ Applicable Measuring Techniques for Analysis of the Water Adsorption by Stone

  • 4

    2013, 1, 85, S. 19 [CrossRef], CavazziniAlberto, MarchettiNicola, PastiLuisa, GrecoRoberto, DondiFrancesco, LaganàAldo, CiogliAlessia, GasparriniFrancesco, Analytical Chemistry, Anal. Chem., 0003-2700, A New Method to Investigate the Intrusion of Water into Porous Hydrophobic Structures under Dynamic Conditions

  • 5

    2013, 9, 42, S. 4141 [CrossRef], CoasneBenoit, GalarneauAnne, PellenqRoland J. M., Di RenzoFrancesco, Chemical Society Reviews, Chem. Soc. Rev., 0306-0012, Adsorption, intrusion and freezing in porous silica: the view from the nanoscale

  • 6

    2012, 18, 407, S. 3797 [CrossRef], HassanJamal, Physica B: Condensed Matter, Physica B: Condensed Matter, 09214526, Pore size distribution calculation from 1H NMR signal and N2 adsorption–desorption techniques

  • 1

    10.1351/pac198557040603, K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewska. Pure Appl. Chem.57, 603 (1985).

  • 2

    10.1351/pac199466081739, J. Rouquerol, D. Avnir, C. W. Fairbridge, D. H. Everett, J. R. Haynes, N. Pernicone, J. D. F. Ramsay, K. S. W. Sing, K. K. Unger. Pure Appl. Chem.66, 1739 (1994).

  • 3

    H. Giesche. In Handbook of Porous Solids, Vol. 1, F. Schueth, K. S. W. Sing, J. Weitkamp (Eds.), pp. 309–351, Wiley-VCH, Weinheim (2002).

  • 4

    10.1016/S0001-8686(98)00052-9, C. León y León. Adv. Colloid Interface Sci.76-77, 341 (1998).

  • 5

    ISO 15901-1:2005, “Pore size distribution and porosity of solid materials by mercury porosimetry and gas adsorption – Part 2: Analysis of macropores by mercury porosimetry”, International Organization for Standardization (ISO), Geneva (2005).

  • 6

    S. Lowell, J. Shields, M. A. Thomas, M. Thommes. Characterization of Porous Solids and Powders: Surface Area, Porosity and Density, Springer (2004).

  • 7

    10.1002/ppsc.200601013, C. Felipe, S. Cordero, I. Kornhauser, G. Zgrablich, R. Lopez, F. Rojas. Part. Part. Syst. Charact.23, 48 (2006).

  • 8

    10.1002/ppsc.200601012, S. P. Rigby, I. O. Evbuoumwan, M. J. Watt-Smith, K. Edler, R. S. Fletcher. Part. Part. Syst. Charact.23, 82 (2006).

  • 9a

    10.1021/la049939e, F. Porcheron, P. A. Monson, M. Thommes. Langmuir20, 6482 (2004).

  • 9b

    10.1021/la063080e, F. Porcheron, M. Thommes, R. Ahmad, P. A. Monson. Langmuir23, 3372 (2007).

  • 10

    U.S. Department of Labor Occupational Safety and Health Administration (OSHA), Safety and Health Topics: Health Guidelines (2010). <http://www.osha.gov/SLTC/mercury/exposure_limits.html>.

  • 11

    U.S. Department of Labor Occupational Safety and Health Administration (OSHA). Occupational Safety and Health Guideline for Mercury Vapor, September (1996). <http://www.osha.gov/SLTC/healthguidelines/mercuryvapour/recognition.html>.

  • 12

    National Institute for Occupational Safety and Health (NIOSH). Publication No. 92-100 (1992). <http://www.cdc.gov/niosh/pdfs/92-100.pdf>.

  • 13

    J. D. Blando, D. Singh. Controlling Metallic Mercury Exposure in the Workplace: A Guide for Employers, revised ed., New Jersey Department of Health and Senior Services, Trenton, NJ (2004). <http://www.state.nj.us/health/surv/documents/mercemp.pdf>.

  • 14

    10.1021/la9914256, F. Gomez, R. Denoyel, J. Rouquerol. Langmuir16, 3474 (2000).

  • 15

    10.1063/1.1643728, B. Lefevre, A. Saugey, J.-L. Barrat, L. Bocquet, E. Charlaix, P. F. Gobin, G. Vigier. J. Chem. Phys.120, 4927 (2004).

  • 16

    A. Jena, K. Gupta. Fluid Particle Separation J.4, 227 (2002).

  • 17

    10.1006/jcis.1996.4495, A. Y. Fadeev, V. Eroshenko. J. Colloid Interface Sci.187, 275 (1997).

  • 18

    10.1021/ja011011a, V. Eroshenko, R.-C. Regis, M. Soulard, J. Patarin. J. Am. Chem. Soc.123, 8129 (2001).

  • 19

    10.1006/jcis.1994.1021, B. Miller, I. Tyomkin. J. Colloid Interface Sci.162, 163 (1994).

  • 20

    Yu. M. Volfkovotch, V. S. Bagotzky, V. E. Sosenkin, E. I. Shkolnikov. Sov. Electrochem.16, 1325 (1981).

  • 21

    10.1016/S0927-7757(01)00650-1, Y. M. Volfkovich, V. S. Bagotzky, V. E. Sosenkin, I. A. Blinov. Colloids Surf., A187-188, 349 (2001).

  • 22

    A. V. Neimark. Ads. Sci. Technol.7, 210 (1990).

  • 23

    A. V. Neimark. JETP Lett.51, 535 (1990).

  • 24

    10.1142/S0218348X94000041, A. V. Neimark, E. Robens, K. K. Unger, J. M. Volfkovich. Fractals2, 45 (1994).

  • 25

    P. N. Aukett, C. A. Jessop. In Fundamentals of Adsorption, M. D. Le Van (Ed.), p. 59, Kluwer, Boston (1996).

  • 26

    10.1021/la990159t, K. L. Muray, N. A. Seaton, M. A. Day. Langmuir15, 6728 (1999).

  • 27

    R. Denoyel, M. Barrande, I. Beurroies. In Studies in Surface Science and Catalysis, P. Llewellyn et al. (Eds.), Elsevier, 160, 33 (2007).

  • 28

    10.1016/S0021-9673(99)00697-4, I. Gusev. J. Chromatogr., A855, 273 (1999).

  • 29

    P. C. Carman. Trans. Inst. Chem. Eng.15, 150 (1937).

  • 30

    10.1023/A:1010735118136, S. Mauran. Transport Porous Media43, 355 (2001).

  • 31

    10.1021/ie960015z, V. Kapur. Ind. Eng. Chem. Res.35, 3179 (1996).

  • 32

    10.1021/ac011163o, F. C. Leinweber. Anal. Chem.74, 2470 (2002).

  • 33

    10.1016/S0021-9673(03)00391-1, F. C. Leinweber. J. Chromatogr., A1006, 207 (2003).

  • 34

    F. C. Leinweber. Chem. Eng. Technol.11, 1177 (2002).

  • 35

    10.1021/ac0262199, N. Vervoort. Anal. Chem.75, 843 (2003).

  • 36

    10.1021/ac049202u, P. Gzil. Anal. Chem.76, 6707 (2004).

  • 37

    10.1088/0022-3727/40/21/050, A. F. Miguel, A. Serrenho. J. Phys. D: Appl. Phys.40, 6824 (2007).

  • 38

    10.1016/j.chroma.2009.01.079, R. Skudas, B. A. Grimes, M. Thommes, K. K. Unger. J. Chromatogr., A1216, 2635 (2009).

  • 39

    10.1016/0040-6031(77)85122-8, M. Brun, J. F. Quinson, C. Eyraud. Thermochim. Acta21, 59 (1977).

  • 40

    10.1016/j.chroma.2009.07.075, M. Barrande, I. Beurroies, R. Denoyel, I. Tatarova, M. Gramblicka, M. Polakovic, M. Joehnck, M. Schulte. J. Chromatogr., A1216, 6906 (2009).

  • 41

    10.1103/PhysRevLett.71.3589, J. H. Strange, M. Rahman, E. G. Smith. Phys. Rev. Lett.71, 3589 (1993).

  • 42

    10.1016/j.jcis.2006.09.054, D. Vargas-Florencia, O. V. Petrov, I. Furo. J. Colloid Interface Sci.305, 280 (2007).

  • 43

    10.1006/jcat.1993.1328, M. P. Hollewand, L. F. Gladden. J. Catal.144, 254 (1993).

  • 44a

    10.1063/1.1355270, Y. Wang, F. De Carlo, D. C. Mancini, I. McNulty, B. Tieman, J. Bresnahan, I. Foster, J. Insley, P. Lane, G. von Laszewski, C. Kesselman, M. H. Su, M. Thiebaux. Rev. Sci. Instrum.72, 2062 (2001).

  • 44b

    J. H. Raistrick. Mater. World9, 11 (2001).

  • 45

    J. H. Raistrick. Mater. World9, 11 (2001).

  • 46

    10.1021/jp0015628, A. J. Koster, U. Ziese, A. J. Verklejj, A. H. Janssen, K. P. de Jong. J. Phys. Chem. B104, 9368 (2000).

  • 47

    10.1111/j.0022-2720.2004.01397.x, L. Holzer, F. Indutnyi, P. H. Gasser, B. Munch, M. Wegmann. J. Microsc.216, 84 (2004).

  • 48

    10.1016/S1464-1895(99)00079-4, J. T. Fredrich. Phys. Chem. Earth A24, 551 (1999).

  • 49

    P. T. Callaghan. Principles of Nuclear Magnetic Resonance Microscopy, Clarendon Press, Oxford, UK (1991).

  • 50

    10.1002/cjce.5450830122, L. Ruffino, R. Mann, R. Oldman, E. H. Stitt, E. Boller, P. Cloetens, M. di Michiel, J. Merino. Can. J. Chem. Eng.83, 132 (2005).

  • 51

    S. P. Rigby, M. J. Watt-Smith, P. Chigada, J. A. Chudek, R. S. Fletcher, J. Wood, S. Bakalis, T. Miri. Chem. Eng. Sci.61, 7579 (2006).

  • 52

    10.1002/ppsc.200400925, S. P. Rigby, R. S. Fletcher. Part. Part. Syst. Charact.21, 138 (2004).

  • 53

    S. Torquato. Random Heterogeneous Materials: Microstructure and Macroscopic Properties, Springer, New York (2005).

  • 54

    P. Levitz. In Handbook of Porous Solids, Vol. 1, F. Schueth, K. S. W. Sing, J. Weitkamp (Eds.), Chap. 2, Wiley-VCH, Weinheim (2002).

  • 55

    F. A. Dullien. Porous Media: Fluid Transport and Pore Structure, Academic Press, New York (1976).

  • 56

    M. Sahimi. Flow and Transport in Porous Media and Fractured Rock, VCH (1995).

  • 57

    J. Serra. Image Analysis and Mathematical Morphology, Academic Press, London (1982).

  • 58

    S. Ryde, S. Anderson, K. Larson, Z. Blum, T. Landh, S. Lidin, B. W. Ninham. The Language of Shape: The Role of Curvature in Condensed Matter, Elsevier (1997).

  • 59

    10.1016/j.colsurfa.2004.04.034, C. H. Arns, M. A. Knackstedt, K. R. Mecke. Colloids Surf., A241, 351 (2004).

  • 60

    10.1063/1.458827, B. Lu, S. Torquato. J. Chem. Phys.93, 3452 (1990).

  • 61

    10.1103/PhysRevB.44.60, R. Hilfer. Phys. Rev. B44, 60 (1991).

  • 62

    10.1016/S0378-4371(98)00111-3, B. Biswal, C. Manwart, R. Hilfer. Physica A255, 221 (1998).

  • 63

    10.1051/jp1:1992174, P. Levitz, D. Tchoubar. J. Phys. I2, 771 (1992).

  • 64

    P. Levitz. In Characterisation of Porous Solid IV, B. McEnaney et al. (Eds.), p. 213, Royal Society of Chemistry (1997).

  • 65

    M. Coleman. J. Appl. Prob.2, 169 (1965).

  • 66

    10.1021/j100191a005, H. Reiss. J. Phys. Chem.96, 4736 (1992).

  • 67

    10.1143/JPSJ.40.567, M. Doi. J. Phys. Soc. Jpn.40, 567 (1976).

  • 68

    A. Guinier, G. Fournet. Small Angle Scattering of X-rays, Chap. 1, John Wiley (1955).

  • 69

    10.1016/0026-0800(70)90002-9, L. K. Barrett, C. S. Yust. Metallography3, 1 (1970).

  • 70

    C. Lin, M. H. Cohen. J. Appl. Phys.59, 328 (1994).

  • 71

    10.1046/j.1365-2818.2000.00725.x, L. Pothuaud, P. Porion, E. Lespessailles, C. L. Benhamou, P. Levitz. J. Microsc.199, 149 (2000).

  • 72

    10.1103/PhysRevE.79.031127, M. Han, S. Youssef, E. Rosenberg, M. Fleury, P. Levitz. Phys. Rev. E79, 031127 (2009).

  • 73

    10.1016/S0021-9290(02)00060-X, L. Pothuaud, B. Rietbergen, L. Mosekilde, O. Beuf, P. Levitz, C. Benhamou, S. Majumdar. J. Biomechan.35, 1091 (2002).

  • 74

    D. Stoyan, W. Kendall, J. Mecke. Stochastic Geometry and its Applications, 2nd ed., John Wiley (1995).

  • 75

    M. Y. Joshi. Ph.D. thesis, University of Kansas, USA (1974).

  • 76

    10.1016/0301-9322(90)90025-E, P. M. Adler, C. G. Jacquin, J. A. Quiblier. Int. J. Multiphase Flow16, 691 (1990).

  • 77

    10.1016/S0001-8686(98)00042-6, P. Levitz. Adv. Colloid Interface Sci.76–77, 71 (1998).

  • 78

    10.1007/BF02768903, R. D. Hazlett. Math. Geol.29, 801 (1997).

  • 79

    10.1006/jcis.1996.4675, M. Rintoul, S. J. Torquato. Colloid Interface Sci.186, 467 (1997).

  • 80

    10.1103/PhysRevE.57.495, C. L. T. Yeong, S. Torquato. Phys. Rev. E57, 495 (1998).

  • 81

    10.1103/PhysRevE.58.224, C. L. T. Yeong, S. Torquato. Phys. Rev. E58, 224 (1998).

  • 82

    B. B. Mandelbrot. The Fractal Geometry of Nature, W.H. Freeman, San Francisco (1982).

  • 83

    J. F. Gouyet. Physics and Fractal Structures, Springer (1996).

  • 84

    ISO/IEC 17025:2005, General Requirements for the Competence of Testing and Calibration Laboratories, International Organization for Standardization (ISO), Geneva (2005).

  • 85

    10.1007/s00769-006-0089-9, H. Emons, A. Fajgelj, A. M. H. van der Veen, R. Watters. Accred. Qual. Assur.10, 576 (2006).

  • 86

    ISO/IEC Guide 99, International Vocabulary of Metrology - Basic and General Concepts and Associated Terms (VIM), 3rd ed. (2007). JCGM 200:2008 at <http://www.bipm.org/en/publica-tions/guides/vim>.

  • 87

    ISO Guide 30:1992, Terms and Definitions Used in Connection with Reference Materials, International Organization for Standardization (ISO), Geneva (1992).

  • 88

    ISO Guide 31:2000, Contents of Certificates of Reference Materials, International Organization for Standardization (ISO), Geneva (2000).

  • 89

    ISO Guide 32:1997, Calibration of Chemical Analysis and Use of Certified Reference Materials, International Organization for Standardization (ISO), Geneva (1997).

  • 90

    ISO Guide 33:2000, Uses of Certified Reference Materials, International Organization for Standardization (ISO), Geneva (2000).

  • 91

    ISO Guide 34:2000, General Requirements for the Competence of Reference Material Producers as Amended by Technical Corrigendum 1 of 15/11/2003, International Organization for Standardization (ISO), Geneva (2003).

  • 92

    ISO Guide 35:2006, Certification of Reference Materials: General and Statistical Principles, International Organization for Standardization (ISO), Geneva (2006).

  • 93

    ISO/IEC Guide 98:1995, Guide to the Expression of Uncertainty in Measurement (GUM), International Organization for Standardization (ISO), Geneva (1995).

Comments (0)

Please log in or register to comment.