Jump to ContentJump to Main Navigation
Show Summary Details

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

IMPACT FACTOR increased in 2015: 0.575
5-year IMPACT FACTOR: 0.619

SCImago Journal Rank (SJR) 2015: 0.216
Source Normalized Impact per Paper (SNIP) 2015: 0.374
Impact per Publication (IPP) 2015: 0.592

Open Access
See all formats and pricing


Select Volume and Issue
Loading journal volume and issue information...

Kinetics of nanocrystalline iron nitriding

Walerian Arabczyk1 / Jacek Zamłynny1 / Dariusz Moszyński1

Institute of Chemical and Environment Engineering, West Pomeranian University of Technology, ul. Pułaskiego 10,70-322 Szczecin, Poland1

This content is open access.

Citation Information: Polish Journal of Chemical Technology. Volume 12, Issue 1, Pages 38–43, ISSN (Online) 1899-4741, ISSN (Print) 1509-8117, DOI: 10.2478/v10026-010-0008-z, April 2010

Publication History

Published Online:

Kinetics of nanocrystalline iron nitriding

Nitriding of nanocrystalline iron was studied under the atmosphere of pure ammonia and in the mixtures of ammonia - hydrogen - nitrogen at temperatures between 350°C and 500°C using thermogravimetry and x-ray diffraction. Three stages of nitriding were observed and have been ascribed to the following schematic reactions: (1) α-Fe → γ'-Fe4N, (2) γ'- Fe4N → ε - Fe3N and (3) ε - Fe3N → ε - Fe2N. The products of these reactions appeared in the nitrided nanocrystalline iron not sequentially but co-existed at certain reaction ranges. The dependence of a reaction rate for each nitriding stage on partial pressure of ammonia is linear. Moreover, a minimal ammonia partial pressure is required to initiate the nitriding at each stage.

Keywords: iron nitrides; microporous materials; chemical synthesis; thermogravimetric analysis; X-ray diffraction

  • VDI (1990). VDI - Lexikon Werkstofftechnik. Dusseldorf: VDI-Verlag.

  • Bell, T. (1977). Source Book on Nitriding (pp. 266 - 278). Metals Park: American Society of Metals.

  • Mongis, J., Peyre, J. P., & Tournier, C. (1984). Nitriding of microalloyed steels. Heat Treatment of Metals. 11(3), 71 - 75.

  • (2006). Nanomaterials Handbook. Boca Raton: CRC/Taylor & Francis.

  • Gu, J. F., Bei, D. H., Pan, J. S., Lu, J., & Lu, K. (2002). Improved nitrogen transport in surface nanocrystallized lowcarbon steels during gaseous nitridation. Materials Letters. 55, 340 - 343.

  • Tong, W. P., Tao, N. R., Wang, Z. B., Zhang, H. W., Lu, J., & Lu, K. (2004). The formation of ε-Fe3-2 N phase in a nanocrystalline Fe. Scripta Materialia. 50, 647-650.

  • Tong, W. P., Liu, C. Z., Wang, W., Tao, N. R., Wang, Z. B., Zuo, L., & He, J. C. (2007). Gaseous nitriding of iron with a nanostructured surface layer. Scripta Materialia. 57, 533 - 536. [Web of Science]

  • Schaaf, P. (2002). Laser nitriding of metals. Prog. Mater. Sci. 47, 1 - 161. [CrossRef]

  • Nishimaki, K., Ohmae, S., Yamamoto, T. A., & Katsura, M. (1999). Formation of iron-nitrides by the reaction of iron nanoparticles with a stream of ammonia. Nanostructured Materials. 12, 527 - 530. [CrossRef]

  • Inia, D. K., Vredenberg, A. M., Habraken, F. H. P. M., & Boerma, D. O. (1999). Nitrogen uptake and rate-limiting step in low-temperature nitriding of iron. Journal of Applied Physics. 86(2), 810 - 816. [CrossRef]

  • Wu, X. L., Zhong, W., Tang, N. J., Jiang, H. Y., Liu, W., & Du, Y. W. (2004). Magnetic properties and thermal stability of nanocrystalline ε-Fe3N prepared by gas reduction-nitriding method. J. Alloy. Comp. 385, 294 - 297. DOI: 10.1016/j.jallcom.2004.04.127. [CrossRef]

  • Jiraskova, Y., Havlicek, S., Schneeweiss, O., Perina, V., & Blawert, C. (2001). Characterization of iron nitrides prepared by spark erosion, plasma nitriding, and plasma immersion ion implantation. Journal of Magnetism and Magnetic Materials. 234, 477 - 488.

  • Lin, C.-K., Chen, G.-S., Chen, J.-S., Chin, T.-S., & Lee, P.-Y. (2001). Characterization of iron nitride powders formed by mechanical alloying and atmospheric heat treatment techniques. J. Chin. Inst. Eng. 24(6), 755 - 762.

  • Schaaf, P. (1998). Iron nitrides and laser nitriding of steel. Hyperfine Interactions. 111, 113 - 119.

  • Shinno, H., Uehara, M., & Saito, K. (1997). Synthesis of α"-Fe16 N2 iron nitride by means of nitrogen-ion implantation into iron thin films. J. Mater. Sci. 32, 2255 - 2261. [CrossRef]

  • Kunze, J. (1990). Nitrogen and carbon in iron and steel thermodynamics. Berlin: Akademie-Verlag.

  • Lakhtin, J. M., & Kogan, J. D. (1976). Azotirovanie stali. Moskva: Masinostroenie.

  • Lehrer, E. (1930). The equilibrium, iron - hydrogen - ammonia. Z. Electrochem. 36, 383 - 392.

  • Wohlschloegel, M., Welzel, U., & Mittemeijer, E. J. (2007). Unexpected formation of ε iron nitride by gas nitriding of nanocrystalline α-Fe films. Applied Physics Letters. 91, 141901. [Web of Science]

  • Arabczyk, W., & Wróbel, R. (2003). Study of the Kinetics of Nitriding of Nanocrystalline Iron using TG and XRD methods. Sol. State Phenom. 94, 185 - 188.

  • Cao, M., Wang, R., Fang, X., Cui, Z., Chang, T., & Yang, H. (2001). Preparing γ'-Fe4N ultrafine powder by twice-nitriding method. Powder Technology. 115, 96-98.

  • Arabczyk, W., & Jakrzewska, M. (1995). The nitriding kinetics of fine-crystalline α-Fe. In: Advanced materials and technologies: 14th International Scientific Conference (pp. 21 - 24). Gliwice: Committee of Metallurgy of the Polish Academy of Science.

  • Arabczyk, W., & Wróbel, R. (2003). Study of the kinetics of reduction of the nanocrystalline iron nitrides. Annals of Polish Chemical Society. 3(3), 1065 - 1069.

  • Opalińska, A., Leonelli, C., Łojkowski, W., Pielaszek, R., Grzanka, E., Chudoba, T., Matysiak, H., Wejrzanowski, T., & Kurzydłowski, K. J. (2006). Effect of Pressure on Synthesis of Pr-Doped Zirconia Powders Produced by Microwave-Driven Hydrothermal Reaction. J. Nanomater. 2006(Article ID 98769), 1 - 8. DOI: 10.1155/JNM/2006/98769.

  • Schloegl, R. (1991). In: J. R. Jennings, Catalytic Ammonia Synthesis (p. 19). New York: Plenum Press.

  • Du Marchie van Voorthuysen, E. H., Chechenin, N. C., & Boerma, D. O. (2002). Low-Temperature Extention of the Lehrer Diagram and the Iron-Nitrogen Phase Diagram. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 33A, 2593 - 2598.

  • Arabczyk, W., & Zamłynny, J. (1999). Study of the ammonia decomposition over iron catalysts. Catal. Lett. 60(3), 167 - 171. [Web of Science] [CrossRef]

  • Love, K. S., & Emmett, P. H. (1941). The Catalytic Decomposition of Ammonia over Iron Synthetic Ammonia Catalysts. J. Amer. Chem. Soc. 63, 3297 - 3308.

  • Logan, S. R., Moss, R. L., & Kemball, C. (1958). The Catalytic Decomposition of Ammonia on Evaporated Iron Films. Trans. Farad. Soc. 54, 922 - 930.

  • Pulkkinen, R. E. E. (1982). Kinetics of nitridation of α-irons containing chromium, molybdenum, and silicon in ammonia - hydrogen mixtures. Metal Science. 16, 37 - 40.

  • Rosendaal, H. C. F., Colijn, P. F., & Scheaf, P. J. (1983). The developement of nitrogen concentration profiles of nitriding iron. Metal. Trans. 14, 395 - 399.

  • Keddam, M., Djeghlal, M. E., & Barrallier, L. (2005). A simple diffusion model for the growth kinetics of γ' iron nitride on the pure iron substrate. Appl. Surf. Sci. 242, 369 - 374. DOI: 10.1016/j.apcusc.2004.09.003. [CrossRef] [Web of Science]

  • Keddam, M., Djeghlal, M. E., & Barrallier, L. (2004). A diffusion model for simulation of bilayer growth (ε/γ') of nitrided pure iron. Mater. Sci. Eng. A. 378, 475-478. DOI: 10.1016/j.msea.2003.11.066. [CrossRef]

  • Grabke, H. J. (1968). Reaction of ammonia, nitrogen, and hydrogen on the surface of iron. II. Kinetics of iron nitridation with nitrogen and nitrogen desorption. Ber. Bunsenges. Phys. Chem. 4, 533 - 543.

  • Grabke, H. J. (1973). Kinetics of nitriding iron as a function of the oxygen activity of the gas. Archiv. Eisenhut. 44, 603 - 608.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Dariusz Moszyński, Karolina Kiełbasa, and Walerian Arabczyk
Materials Chemistry and Physics, 2013, Volume 141, Number 2-3, Page 674
Dariusz Moszyński
The Journal of Physical Chemistry C, 2014, Volume 118, Number 28, Page 15440
V. Rocher, J. Manerova, M. Kinnear, D. J. Evans, and M. G. Francesconi
Dalton Trans., 2014, Volume 43, Number 7, Page 2948
Dariusz Moszyński, Izabela Moszyńska, and Walerian Arabczyk
Applied Physics Letters, 2013, Volume 103, Number 25, Page 253108

Comments (0)

Please log in or register to comment.