Jump to ContentJump to Main Navigation

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin

4 Issues per year

Increased IMPACT FACTOR 2012: 0.444

Open Access
VolumeIssuePage

Open Access

The effect of the surface modification of carbon nanotubes on their dispersion in the epoxy matrix

Maria Wladyka-Przybylak1 / Dorota Wesolek1 / Weronika Gieparda1 / Anna Boczkowska1 / Ewelina Ciecierska1

Institute of Natural Fibres and Medicinal Plants, Poznań, Poland1

Faculty of Materials Science and Engineering, University of Technology, Warsaw, Poland2

This content is open access.

Citation Information: Polish Journal of Chemical Technology. Volume 13, Issue 2, Pages 62–69, ISSN (Online) 1899-4741, ISSN (Print) 1509-8117, DOI: 10.2478/v10026-011-0026-5, June 2011

Publication History

Published Online:
2011-06-16

The effect of the surface modification of carbon nanotubes on their dispersion in the epoxy matrix

Functionalization of multi-walled carbon nanotubes (MWCNTs) has an effect on the dispersion of MWCNT in the epoxy matrix. Samples based on two kinds of epoxy resin and different weight percentage of MWCNTs (functionalized and non-functionalized) were prepared. Epoxy/carbon nanotubes composites were prepared by different mixing methods (ultrasounds and a combination of ultrasounds and mechanical mixing). CNTs modified with different functional groups were investigated. Surfactants were used to lower the surface tension of the liquid, which enabled easier spreading and reducing the interfacial tension. Solvents were also used to reduce the liquid viscosity. Some of them facilitate homogeneous dispersion of nanotubes in the resin. The properties of epoxy/nanotubes composites strongly depend on a uniform distribution of carbon nanotubes in the epoxy matrix. The type of epoxy resin, solvent, surfactant and mixing method for homogeneous dispersion of CNTs in the epoxy matrix was evaluated. The effect of CNTs functionalization type on their dispersion in the epoxy resins was evaluated on the basis of viscosity and microstructure studies.

  • Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature 354, 56-58. doi:10.1038/354056a0. [CrossRef]

  • Nesterenko, A.M., Kolesnik, N.F., Akhmatov, Y.S., Sukhomlin, V.I. & Prilutski, O.V. (1982). Metals 3 UDK 869.173.23, News of the Academy of Science, USSR, 12-16.

  • Iijima, S. & Ichihashi, T. (1993). Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603-605. doi:10.1038/363603a0. [CrossRef]

  • Bethune, D.S., Kiang, C.H., Devries, M.S., Gorman, G., Savoy, R. & Vazquez, J. et al. (1993). Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605-607. doi:10.1038/363605a0. [CrossRef]

  • Ajayan, P.M. & Iijima, S. (1993). Capillarity-induced filling of carbon nanotubes. Nature 361, 333-334. doi:10.1038/361333a0. [CrossRef]

  • Thostenson, E.T., Ren, Z.F., Chou, T.-W. (2001). Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61(13), 1899-1912. doi:10.1016/S0266-3538(01)00094-X. [CrossRef]

  • Wildoer, J.W.G., Venema, L.C., Rinzler, A.G., Smalley, R.E. & Dekker, C. (1998). Electronic structure of atomically resolved carbon nanotubes. Nature 391, 59-62. doi:10.1038/34139. [CrossRef]

  • Hone, J., Batlogg, B., Benes, Z., Johnson, A.T. & Fischer, J.E. (2000). Quantized Phonon Spectrum of Single-Wall Carbon Nanotubes. Science 289, 1730. doi: 10.1126/science.289.5485.1730. [CrossRef]

  • Ruoff, R.S. & Lorents, D.C. (1995). Mechanical and thermal properties of carbon nanotubes. Carbon 33(7), 925-930. doi:10.1016/0008-6223(95)00021-5. [CrossRef]

  • Treacy, M.M.J., Ebbesen, T.W. & Gibson, J.M. (1996). Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381, 678-680. doi:10.1038/381678a0 [CrossRef]

  • Gojny, F.H., Wichmann, M.H.G., Fiedler, B. & Schulte, K. (2005). Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites - A comparative study. Compos. Sci. Technol. 65(15-16), 2300-2313. doi:10.1016/j.compscitech.2005.04.021 [CrossRef]

  • Prolongo, S.G., Rosario, G. & Urena A. (2006). Comparative study on the adhesive properties of different epoxy resins. Int J Adhesion and Adhesives 26(3), 125-132. doi:10.1016/j.ijadhadh.2005.02.004. [CrossRef]

  • Neffgen, B. (1985). Epoxy resins in the building industry - 25 years of experience. Int J Cement Comp and Lightweight Concrete 7(4), 253-260. doi:10.1016/0262-5075(85)90046-6. [CrossRef]

  • Toldy, A., Szolnoki, B. & Marosi, G. (2010) Flame retardancy of fibre-reinforced epoxy resin composites for aerospace applications. Polymer Degradation and Stability Article in Press. doi:10.1016/j.polymdegradstab.2010.03.021. [CrossRef]

  • Kagathara, V.M. & Parsania, P.H. (2001) Preparation and evaluation of mechano-electrical properties and chemical resistance of epoxy laminates of halogenated bisphenol-C resins. Polymer Testing 20(6), 713-716. doi:10.1016/S0142-9418(00)00071-4. [CrossRef]

  • Atta, A.M., Abdou, M.I., Elsayed, A. & Raga M.E. (2008). New bisphenol novolac epoxy resins for marine primer steel coating applications. Progress in Organic Coatings 63(4), 372-376. doi:10.1016/j.porgcoat.2008.06.013. [Web of Science] [CrossRef]

  • Kovacs, J.Z., Andersen, K., Puls, J.R., Pardo Garcia, K., Schossig, M., Schulte, K. & Bauhofer, W. (2007). Analyzing the quality of carbon nanotube dispersions in polymers using scanning electron microscopy. Carbon 45(6), 1279-1288. doi:10.1016/j.carbon.2007.01.012. [Web of Science] [CrossRef]

  • Abdalla, M., Detrick, D., Adibempe, D., Nyairo, E., Robinson, P. & Thompson, G. (2007). The effect of interfacial chemistry on molecular mobility and morphology of multiwalled carbon nanotubes epoxy nanocomposite. Polymer 48(19), 5662-5670. doi:10.1016/j.polymer.2007.06.073. [Web of Science] [CrossRef]

  • Young, R.J. & Lucas, M. (2007). Effect of residual stresses upon the Raman radial breathing modes of nanotubes in epoxy composites. Compos. Sci. Technol. 67(5), 840-843. doi:10.1016/j.compscitech.2005.12.031 [Web of Science] [CrossRef]

  • Jianfeng, S., Weishi, H., Liping, W., Yizhe, H. & Mingxin, Y. (2007). Thermo-physical properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes. Comp. A 38, 1331-1336. doi:10.1016/j.compositesa.2006.10.012. [CrossRef]

  • Liu, J.Q., Xiao, T., Liao K. & Wu, P. (2007). Interfacial design of carbon nanotube polymer composites: a hybrid system of noncovalent and covalent functionalizations. Nanotechnology 18(16), 165701. doi:10.1088/0957-4484/18/16/165701. [CrossRef] [Web of Science]

  • Zhou, Y., Pervin, F., Lewis, L. & Jeelani, S. (2007). Experimental study on the thermal and mechanical properties of multi-walled carbon nanotube-reinforced epoxy. Mat. Sci. Eng. A 452, 657-664. doi:10.1016/j.msea.2006.11.066 [CrossRef]

  • Gojny, F.H. & Schulte, K. (2004). Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites. Compos. Sci. Tech. 64(15), 2303. doi:10.1016/j.compscitech.2004.01.024. [CrossRef]

  • Hadjiev, V.G., Lagoudas, D.C., Oh, E.S., Thakre, P., Davis, D., Files, B.S., Yowell, L., Arepalli, S., Bahr, J.L. & Tour, J.M. (2006). Buckling instabilities of octadecylamine functionalized carbon nanotubes embedded in epoxy. Compos. Sci. Tech. 66(1), 128-136. doi:10.1016/j.compscitech.2005.01.004. [CrossRef]

  • Martin, C.A., Sandler, J.K.W., Windle, A.H., Schwarz, M.K., Baunhofer, W., Schulte, K. & Shaffer, M.S.P. (2005). Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer 46(3), 877-886. doi:10.1016/j.polymer.2004.11.081. [CrossRef]

  • Fidelus, J.D., Wiesel, E., Gojny, F.H., Schulte, K. & Wagner H.D. (2005). Thermo-mechanical properties of randomly oriented carbon/epoxy nanocomposites. Comp. A 36(11), 1555-1561. doi:10.1016/j.compositesa.2005.02.006. [CrossRef]

  • Gojny, F.H., Wichmann, M.H.G., Fiedler, B., Bauhofer, W. & Schulte, K. (2005). Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites. Comp. A 36(11), 1525-1535. doi:10.1016/j.compositesa.2005.02.007. [CrossRef]

  • Potschke, P., Fornes, T.D. & Paul, D.R. (2002). Rheological behavior of multiwall carbon nanotubes/polycarbonate composites. Polymer 43, 3247-55. doi:10.1016/S0032-3861(02)00151-9. [CrossRef]

  • Mitchell, C.A., Bahr, J.L., Arepalli, S., Tour, J.M. & Krishnamoorti, R. (2002). Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 35, 8825-30. doi: 10.1021/ma020890y. [CrossRef]

  • Kim, J.A., Seong, D.G., Kang, T.J. & Youn, J.R. (2006). Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44(10), 1898-1905. doi:10.1016/j.carbon.2006.02.026. [CrossRef]

  • Gojny, F.H., Nastalczyk, J., Rosłaniec, Z., Schulze, K. (2003). Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chem. Phys. Lett. 370, 820-824. 10.2478/v10026-011-0027-4

Comments (0)

Please log in or register to comment.