Jump to ContentJump to Main Navigation
Show Summary Details

Polish Journal of Chemical Technology

The Journal of West Pomeranian University of Technology, Szczecin


IMPACT FACTOR increased in 2015: 0.575
5-year IMPACT FACTOR: 0.619

SCImago Journal Rank (SJR) 2015: 0.216
Source Normalized Impact per Paper (SNIP) 2015: 0.374
Impact per Publication (IPP) 2015: 0.592

Open Access
Online
ISSN
1899-4741
See all formats and pricing

 


Select Volume and Issue
Loading journal volume and issue information...

Kinetics and mechanism of meso-tetraphenylporphyriniron(III) chloride (TPP) catalysed oxidation of indole by sodium perborate

D. Kungumathilagam1 / 1

1Department of Chemistry, Sona College of Technology, Salem-636 005, India

This content is open access.

Citation Information: Polish Journal of Chemical Technology. Volume 15, Issue 2, Pages 107–111, ISSN (Online) 1899-4741, ISSN (Print) 1509-8117, DOI: 10.2478/pjct-2013-0031, July 2013

Publication History

Published Online:
2013-07-10

Developing catalyst is very significant for biologically important reactions which yield products, used as drugs. Mechanistic study on meso-tetraphenylporphyriniron(III) chloride (TPP) catalysed oxidation of indole by sodium perborate in aqueous acetic acid medium have been carried out. The reaction follows a fractional order with respect to substrate and catalyst. The order with respect to oxidant was found to be one. Increase in the percentage of acetic acid and increase in the concentration of [H+] decreased the rate. The reaction fails to initiate polymerization, and a radical mechanism is ruled out. Activation and thermodynamic parameters have been computed. A suitable kinetic scheme based on these observations has been proposed. Significant catalytic activity is observed for the reaction system in the presence of TPP.

Keywords : indole; sodium perborate; meso-tetraphenylporphyriniron(III) chloride; oxidation

  • 1. Sundberg, R.J. & Kirk-Othmer. (1995). Indole. Encyclopediaof Chemical Technology, Wiley, NewYork.

  • 2. Goyal, R.N. & Sangal, A. (2005). Oxidation chemistry of indole-2-carboxylic acid mechanism and products formed in neutral aqueous solution. Electrochim Acta, 50, 2135. DOI: doi.org/10.1016/j.electacta.2004.09.021. [CrossRef]

  • 3. Al-Kazwini, A.T., O’Neill, P., Adams, G.E., Cundall, R.B., Lang, G. & Junino, A. (1991). Reactions of indolic radicals produced upon one-electron oxidation of 5,6-dihydroxyindole and its N(1)-methylated analogue. J. Chem. Soc., Perkin Trans. 2, 1941-1945. DOI: 10.1039/P29910001941. [CrossRef]

  • 4. Al-Kazwini, A.T., O’Neill, P., Adams, G.E., Cundall, R. B., Junino, A. & Maignan, J. (1992). Characterisation of the intermediates produced upon one-electron oxidation of 4-, 5-, 6- and 7-hydroxyindoles by the azide radical. J. Chem. Soc.,Perkin Trans. 2, 657-661. DOI: 10.1039/P29920000657. [CrossRef]

  • 5. Krylov, S.N. & Dunford, H.B. (1996). Detailed model of the peroxidase-catalyzed oxidation of indole-3-acetic acid at neutral pH. J. Phys. Chem. 100, 913-920. DOI: 10.1021/ jp9522270. [CrossRef]

  • 6. Lawson, W.B. & Witkop, B. (1961). A simple method for the preparation of oxindoleacetic and Propionic acids from the parent indoles. J. Org. Chem. 26, 263. DOI: 10.1021/jo01060a618. [CrossRef]

  • 7. Finch, N. & Taylor, W.E. (1962). Oxidative transformations of indole alkaloids. I. The preparation of oxindoles from Yohimbine; The structures and partial syntheses of Mitraphylline, Rhyncophylline and Corynoxeine. J. Am. Chem Soc. 84, 3871-3877. DOI: 10.1021/ja00879a016. [CrossRef]

  • 8. Rangappa, K.S., Esterline, D.T., Mythily, C.K., Mahadevappa, D.S. & Ambedkar, S.Y. (1993). Oxidation of indoles by n-chloro-n-sodio-p-toluenesulphonamide in alkaline medium catalysed by osmium(VIII): A kinetic study. Polyhedron. 12, 1719-1724. DOI: doi.org/10.1016/S0277-5387 (00)84603-3. [CrossRef]

  • 9. Meenakshisundaram, S.P. & Sarathi, N. (2007). Kinetics and mechanism of oxidation of indole by HSO5 -. Int. J. Chem. Kinet. 39, 46-51. DOI: 10.1002/kin.20215. [Web of Science] [CrossRef]

  • 10. Karunakaran, C., Ramachandran, V. & Palanisamy, P.N. (1999). Linear free energy relationship in complex reaction: Tungsten (VI) catalyzed perborate oxidation of S-Phenylmercaptoacetic acids. Int. J. Chem. Kinet., 31, 675-681. DOI: 10.1002/ (SICI)1097-4601(1999)31:9<675::AID-KIN8>3.0.CO; 2-H. [CrossRef]

  • 11. Karunakaran, C. & Palanisamy, P.N. (1998). Kinetic evidence for (N, N-dimethylaniline)-oxodiperoxomolybdenum(VI) or tungsten(VI) as oxidizing species in molybdenum(VI) or tungsten(VI) catalyzed hydrogen peroxide (perborate) oxidation of N, N-dimethylaniline. synth. React. Inorg. Met. Org. Chem., 28, 1115-1125. DOI: 10.1080/00945719809349393. [CrossRef]

  • 12. Karunakaran, C. & Muthukumaran, B. (1997). Zirconium (IV) catalysis in perborate oxidation of iodide. React. Kinet. Catal. Lett., 60, 387-394. DOI: 10.1007/BF02475703. [CrossRef]

  • 13. Karunakaran, C. & Muthukumaran, B. (1995). Molybdenum(VI) catalysis of perborate or hydrogen peroxide oxidation of iodide ion. Transition Met. Chem. (London), Vol. 20 (5), 460-462. DOI: 10.1007/BF00141517. [CrossRef]

  • 14. Meunier, B. (1992). Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. Chem. Rev. 92 (6), 1411-1456. DOI: 10.1021/cr00014a008. [CrossRef]

  • 15. Larsen, J. & Jorgensen, K.A. (1992). A facile oxidation of secondary amines to imines by iodosobenzene or by a terminal oxidant and manganese or iron porphyrins and manganese salen as the catalysts. J. Chem. Soc. Perkin Trans. 2, 1213-1217. DOI: 10.1039/P29920001213. [CrossRef]

  • 16. Groves, J.T., Nemo, T.E. & Myers, R.S. (1979). Hydroxylation and epoxidation catalyzed by iron-porphine complexes. Oxygen transfer from iodosylbenzene. J. Am. Chem. Soc. 101, 1032-1033. DOI: 10.1021/ja00498a040. [CrossRef]

  • 17. Bhuvaneshwari, D.S. & Elango, K.P. (2009). Solvent hydrogen bonding and structural influences on the Cr (VI) oxidation of anilines in aqueous acetic acid medium. J. Indian. Chem. Soc. 86, 242-249.

  • 18. Laidler, K. (1965). Chem. Kinet, Tata-Mcgraw Hill, New Delhi.

  • 19. Ruff, F. & Kucsman, A. (1985). Mechanism of the oxidation of sulphides with sodium periodate J. Chem. Soc. PerkinTrans. 2, 683-687. DOI: 10.1039/P29850000683 [CrossRef]

  • 20. Meenakshisundaram, S.P. & Sokalingam, R.M. (2001). Nonlinear Hammett Relationships in the Reaction of Peroxomonosulfate Anion (HOOSO3 -) with meta- and para-Substituted Anilines in Alkaline Medium. Collect. Czech. Chem. Commun. 66, 897-911. DOI: 10.1135 /cccc2001089. [CrossRef]

  • 21. Meenakshisundaram, S.P., Selvaraju, M., Made Gowda, N.M. & Rangappa, K.S. (2005). Effect of substituents on the rate of oxidation of anilines with peroxomonosulfate monoanion (HOOSO−3) in aqueous acetonitrile: A mechanistic study. Int. J. Chem. Kinet. 37, 649-657. DOI: 10.1002/kin.20119. [CrossRef]

  • 22. Zhou, X.T., Ji, H.B. & Yuan, Q.L. (2008). Baeyer-Villiger oxidation of ketones catalyzed by iron(III) meso- tetraphenylporphyrin chloride in the presence of molecular oxygen. J. Porphyr. Phthalocya, 12, 94-100. DOI: 10.1142/S1088424608000121. [Web of Science] [CrossRef]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
S. Shree Devi, B. Muthukumaran, and P. Krishnamoorthy
Ionics, 2014, Volume 20, Number 12, Page 1783
[2]
S. Shree Devi, B. Muthukumaran, and P. Krishnamoorthy
ISRN Physical Chemistry, 2014, Volume 2014, Page 1

Comments (0)

Please log in or register to comment.