Jump to ContentJump to Main Navigation

Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences.

The Journal of Latvian Academy of Sciences

6 Issues per year


SCImago Journal Rank (SJR): 0.119
Source Normalized Impact per Paper (SNIP): 0.167

Open Access
VolumeIssuePage

Adipose-derived stem cells cultured in autologous serum maintain the characteristics of mesenchymal stem cells

Ance Bogdanova1 / Uldis Bērziņš1 / Ruta Brūvere1 / Guļšena Eivazova1 / Tatjana Kozlovska1

Latvian Biomedical Research and Study Centre, Rātsupītes iela 1, Rīga, LV-1067, LATVIA1

This content is open access.

Citation Information: Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences.. Volume 64, Issue 3-4, Pages 106–113, ISSN (Print) 1407-009X, DOI: 10.2478/v10046-010-0026-5, January 2011

Publication History

Published Online:
2011-01-25

Adipose-derived stem cells cultured in autologous serum maintain the characteristics of mesenchymal stem cells

Human adipose tissue is known to be an attractive and readily available source of mesenchymal stem cells (MSC), which are becoming increasingly popular for application in regenerative medicine. Most of the protocols currently used for in vitro expansion of MSC include fetal bovine serum (FBS) supplementation. When MSC are cultured in such a way for clinical applications this rises concerns about immunogenicity of FBS proteins. A possible solution to this problem is the use of autologous serum (AS) instead of FBS. In this study we investigated whether adipose-derived stem cells (ADSC), cultivated in medium containing AS, maintain characteristics of MSC. The results show that the obtained ADSC were plastic adherent, rapidly dividing (doubling time 40 ± 4 hours), spindle-shaped cells with fibroblastoid morphology and exhibited normal karyotype. No less than 95% of the obtained cells displayed MSC surface markers, including CD73, CD90 and CD105, but showed no expression of the hematopoietic markers CD34 and CD45. ADSC cultured in the presence of AS underwent in vitro differentiation into adipocytes, osteoblasts and chondroblasts, confirmed by Oil Red O, Alizarin Red S and Alcian Blue stains, respectively. These findings suggest that ADSC may be expanded in the AS without the loss of characteristics of MSC.

No taukaudiem izdalītas cilmes šūnas, kuras kultivētas barotnē ar autologo serumu, saglabā mezenhimālo cilmes šūnu īpašības

Cilvēka taukaudi ir viegli pieejams un vērtīgs mezenhimālo cilmes šūnu (mesenchymal stem cells, MSC) avots, un to pielietojums regeneratīvajā medicīnā arvien palielinās. Lielākā daļa protokolu, kas pašlaik tiek izmantoti MSC pavairošanai in vitro, satur fetālo teļa serumu (fetal calf serum, FCS). Šādi kultivētas MSC, kuras paredzētas klīniskiem mērķiem, rada bažas par FCS proteīnu imunogenitāti. Lai no tā izvairītos, FCS vietā var izmantot autologo serumu (AS). Šajā darbā mēs pētījām, vai no taukaudiem iegūtās cilmes šūnas (adipose-derived stem cells, ADSC), kuras tiek kultivētas barotnē ar AS, saglabā MSC īpašības. Rezultāti rāda, ka iegūtās cilmes šūnas bija plastmasas adherentas, vārpstveida šūnas ar fibroblastiem līdzīgu morfologiju un normālu kariotipu, tās strauji dalījās (dubultošanās laiks 40 ± 4 stundas). Vismaz uz 95% no iegūtajām šūnām tika detektēti MSC virsmas marķieri CD73, CD90 un CD105, bet netika detektēti tādi hematopoētisko šūnu marķieri kā CD34 un CD45. ADSC, kuras kultivētas barotnē ar AS, diferenciējās in vitro par adipocītiem, osteoblastiem un hondroblastiem, ko apliecināja diferenciēto šūnu krāsošana ar Oil Red O, Alizarin Red S un Alcian Blue. Iegūtie rezultāti rāda, ka ADSC var tikt pavairotas barotnē ar AS bez MSC raksturīgo iezīmju zuduma.

Keywords: adipose-derived stem cells; autologous serum; differentiation of ADSC

  • Akintoye, S. O., Lam, T., Shi, S., Brahim, J., Collins, M. T., Robey, P. G. (2006). Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals. Bone, 38(6), 758-768. [PubMed] [CrossRef]

  • Doerr, H. W., Cinatl, J., Stürmer, M., Rabenau, H. F. (2003). Prions and orthopedic surgery. Infection, 31(3), 163-171. [PubMed]

  • Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F. C., Krause, D. S., Deans, R. J., Keating, A., Prockop, D. J., Horwitz, E. M. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8(4), 315-317. [Web of Science] [CrossRef] [PubMed]

  • Festy, F., Hoareau, L., Bes-Houtmann, S., Péquin, A. M., Gonthier, M. P., Munstun, A., Hoarau, J. J., Césari, M., Roche, R. (2005). Surface protein expression between human adipose tissue-derived stromal cells and mature adipocytes. Histochem. Cell Biol., 124(2), 113-121. [PubMed] [CrossRef]

  • Fina, L., Molgaard, H. V., Robertson, D., Bradley, N. J., Monaghan, P., Delia, D., Sutherland, D. R., Baker, M. A., Greaves, M. F. (1990). Expression of the CD34 gene in vascular endothelial cells. Blood, 75(12), 2417-2426. [PubMed]

  • Fraser, J. K., Wulur, I., Alfonso, Z., Hedrick, M. H. (2006). Fat tissue: An underappreciated source of stem cells for biotechnology. Trends Biotechnol., 24(4), 150-154. [PubMed] [CrossRef]

  • Fukuda, K. (2001). Development of regenerative cardiomyocytes from mesenchymal stem cells for cardiovascular tissue engineering. Artif. Organs, 25(3), 187-193. [PubMed] [CrossRef]

  • García-Olmo, D., García-Arranz, M., Herreros, D., Pascual, I., Peiro, C., Rodríguez-Montes, J. A. (2005). A phase I clinical trial of the treatment of Crohn's fistula by adipose mesenchymal stem cell transplantation. Dis. Colon. Rectum., 48(7), 1416-1423. [CrossRef] [Web of Science]

  • Gronthos, S., Franklin, D. M., Leddy, H. A., Robey, P. G., Storms, R. W., Gimble, J. M. (2001). Surface protein characterization of human adipose tissue-derived stromal cells. J. Cell. Physiol., 189(1), 54-63.

  • Handschel, J. G. K., Depprich, R. A., Kübler, N. R., Wiesmann, H. P., Ommerborn, M., Meyer, U. (2007). Prospects of micromass culture technology in tissue engineering. Head Face Med., 3, 4. [PubMed]

  • Kakudo, N., Shimotsuma, A., Kusumoto, K. (2007). Fibroblast growth factor-2 stimulates adipogenic differentiation of human adipose-derived stem cells. Biochem. Biophys. Res. Commun., 359(2), 239-244. [Web of Science]

  • Kasten, P., Beyen, I., Egermann, M., Suda, A. J., Moghaddam, A. A., Zimmermann, G., Liginbühl, R. (2008). Instant stem cell therapy: Characterization and concentration of human mesenchymal stem cells in vitro. Eur. Cells Mater., 16, 47-55.

  • Kern, S., Eichler, H., Stoeve, J., Klüter, H., Bieback, K. (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord, or adipose tissue. Stem Cells, 24(5), 1294-1301. [CrossRef] [PubMed]

  • Kopen, G. C., Prockop, D. J., Phinney, D. G. (1999). Marrow stromal cells migrate throughout forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brains. Proc. Natl. Acad. Sci. USA, 96(19), 10711-10716. [CrossRef]

  • Kuznetsov, S. A., Mankani, M. H., Robey, P. G. (2000) Effect of serum on human bone marrow stromal cells: Ex vivo expansion and in vivo bone formation. Transplantation, 70(12), 1780-1787. [CrossRef]

  • Lee, K. D., Kuo, T. K. C., Whang-Peng, J., Chung, Y. F., Lin, C. T., Chou, S. H., Chen, J. R., Chen, Y. P. Lee, O. K. S. (2004). In vitro hepatic differentiation of human mesenchymal stem cells. Hepatology, 40(6), 1275-1284. [CrossRef]

  • Lendeckel, S., Jödicke, A., Christophis, P., Heidinger, K., Wolff, J., Fraser, J. K., Hedrick, M. K., Berthold, L., Howaldt, H. P. (2004). Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. J. Craniomaxillofac. Surg., 32(6), 370-373. [PubMed]

  • Lennon, D., Haynesworth, S., Bruder, S., Jaiswal, N., Caplan, A. (1996). Human and animal mesenchymal progenitor cells from bone marrow: Identification of serum for optimal selection and proliferation. In Vitro Cell. Dev. Biol. Anim., 32(10), 602-611. [CrossRef]

  • Lev, R., Spicer, S. S. (1964). Specific staining of sulphate groups with alcian blue at low pH. J. Histochem. Cytochem., 12(4), 309. [CrossRef]

  • McIntosh, K., Zvonic, S., Garrett, S., Mitchell, J. B., Floyd, E., Hammill, L., Kloster, A., Halvorsen, Y. D., Ting, J. P., Storms, R. W., Goh, B., Kilroy, G., Wu, X., Gimble, J. M. (2006). The immunogenicity of human adipose-derived cells: Temporal changes in vitro. Stem Cells, 24(5), 1246-1253. [CrossRef]

  • Mizuno, N., Shiba, H., Ozeki, Y., Mouri, Y., Niitani, M., Inui, T., Hayashi, H., Suzuki, K., Tanaka, S., Kawaguchi, H., Kurihara, K. (2006). Human autologous serum obtained using a completely closed bag system as a substitute for foetal calf serum in human mesenchymal stem cell cultures. Cell Biol. Int., 30(6), 521-524. [PubMed] [CrossRef]

  • Nimura, A., Muneta, T., Koga, H., Mochizuki, T., Suzuki, K., Makino, H., Umezawa, A., Sekiya, I. (2008). Increased proliferation of human synovial mesenchymal stem cells with autologous human serum. Comparisons with bone marrow mesenchymal stem cells and with fetal bovine serum. Arthritis Rheum., 58(2), 501-510. [Web of Science] [PubMed] [CrossRef]

  • Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143-147.

  • Rodriguez, A. M., Elabd, C., Amri, E. Z., Ailhaud, G., Dani, C. (2005). The human adipose tissue is a source of multipotent stem cells. Biochimie, 87(1), 125-128. [PubMed] [CrossRef]

  • Romanov, Y. A., Darevskaya, A. N., Merzlikina, N. V., Buravkova, L. B. (2005). Mesenchymal stem cells from human bone marrow and adipose tissue: Isolation, characterization, and differentiation potentialities. Bull. Exp. Biol. Med., 140(1), 138-143. [PubMed] [CrossRef]

  • Schwartz, R. E., Reyes, M., Koodie, L., Jiang, Y., Blackstad, M., Lund, T., Lenvik, T., Johnson, S., Hu, W. S., Verfaillie, C. M. (2002). Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J. Clin. Invest., 109(10), 1291-1302.

  • Secco, M., Zucconi, E., Vieira, N. M., Fogaça, L. L. Q., Cerqueira, A., Carvalho, M. D. F., Jazedje, T., Okamoto, O. K., Muotri, A. R., Zatz, M. (2008). Multipotent stem cells from umbilical cord: Cord is richer than blood! Stem Cells, 26(1), 146-150. [PubMed] [CrossRef] [Web of Science]

  • Seo, M. J., Suh, S. Y., Bae, Y. C., Jung, J. S. (2005). Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem. Biophys. Res. Commun., 328(1), 258-264.

  • Shahdadfar, A., Frønsdal, K., Haug, T., Reinholt, F. P., Brinchmann, J. E. (2005). In vitro expansion of human mesenchymal stem cells: Choice of serum is a determinant of cell proliferation, differentiation, gene expression, and transcriptome stability. Stem Cells, 23(9), 1357-1366. [PubMed] [CrossRef]

  • Spees, J. L., Gregory, C. A., Singh, H., Tucker, H. A., Peister, A., Lynch, P. J., Hsu, S. C., Smith, J., Prockop, D. J. (2004). Internalized antigens must be removed to prepare hypoimmunogenic mesenchymal stem cells for cell and gene therapy. Mol. Ther., 9(5), 747-756. [CrossRef] [PubMed]

  • Taléns-Visconti, R., Bonora, A., Jover, R., Mirabet, V., Carbonell, F., Castell, J. V., Gómez-Lechón, M. J. (2006). Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells. World J. Gastroenterol., 12(36), 5834-5845.

  • Tapp, H., Hanley, E. N., Patt, J. C., Gruber, H. E. (2009). Adipose-derived stem cells: Characterization and current application in orthopaedic tissue repair. Exp. Biol. Med., 234(1), 1-9. [Web of Science]

  • Wakitani, S., Saito, T., Caplan, A. I. (1995). Myogenic cells derived from rat bone marrow mesenchymal stem cells exposed to 5-azacytidine. Muscle Nerve., 18(12), 1417-1426. [PubMed]

  • Yamamoto, N., Isobe, M., Negishi, A., Yoshimasu, H., Shimokawa, H., Ohya, K., Amagasa, T., Kasugai, S. (2003). Effects of autologous serum on osteoblastic differentiation in human bone marrow cells. J. Med. Dent. Sci., 50(1), 63-69.

  • Yoshimura, K., Sato, K., Aoi, N., Kurita, M., Hirohi, T., Harii, K. (2008). Cell-assisted lipotransfer for cosmetic breast augmentation: Supportive use of adipose-derived stem/stromal cells. Aesthetic Plast. Surg., 32(1), 48-55. [PubMed]

  • Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., Benhaim, P., Lorenz, H. P., Hedrick, M. H. (2001). Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng., 7(2), 211-226. [PubMed] [CrossRef]

  • Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., Alfonso, Z. C., Fraser, J. K., Benhaim, P., Hedrick, M. H. (2002). Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell., 13(12), 4279-4295. [CrossRef] [PubMed]

Comments (0)

Please log in or register to comment.