Jump to ContentJump to Main Navigation
Show Summary Details

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Ed. by Qaim, Syed M.


IMPACT FACTOR increased in 2015: 1.100
5-year IMPACT FACTOR: 1.229
Rank 15 out of 32 in category Nuclear Science & Technology in the 2015 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2015: 0.470
Source Normalized Impact per Paper (SNIP) 2015: 0.708
Impact per Publication (IPP) 2015: 1.048

249,00 € / $374.00 / £187.00*

Online
ISSN
2193-3405
See all formats and pricing

 


Select Volume and Issue
Loading journal volume and issue information...

30,00 € / $42.00 / £23.00

Get Access to Full Text

Solubility and colloid formation of Th(IV) in concentrated NaCl and MgCl2 solution

M. Altmaier / Volker Neck / Thomas Fanghänel

Citation Information: Radiochimica Acta/International journal for chemical aspects of nuclear science and technology. Volume 92, Issue 9-11/2004, Pages 537–543, ISSN (Print) 0033-8230, DOI: 10.1524/ract.92.9.537.54983, September 2009

Publication History

Published Online:
2009-09-25

Summary

The solubility of crystalline ThO2(cr) and amorphous hydrated Th(IV) oxyhydroxide ThOn(OH)4-2n·xH2O(am) has been measured in dilute to concentrated NaCl and MgCl2 solutions equilibrated with magnesium hydroxide or hydroxychloride at 22±2 °C. The contributions of colloids to the total thorium concentrations observed in both over- and undersaturation experiments with amorphous Th(IV) precipitates have been analysed by ultracentrifugation. The solubility increasing effect of long-time stable Th(IV) eigencolloids, previously investigated in 0.5 M NaCl solutions, is also observed in concentrated 5 M NaCl. Ionic strength and chloride concentration have no effect on the stability of these hydrophilic Th(IV) oxyhydroxide eigencolloids, which are the predominant species in solution. They cause relatively high total thorium concentration in neutral to alkaline steady state solutions, independent of ionic strength: log[Th]tot≈log[Th]coll=-6.3±0.5. In concentrated MgCl2 solutions saturated with magnesium hydroxychloride colloids, the formation of pseudocolloids, i.e., Th(IV) sorbed onto Mg2(OH)3Cl·4H2O(coll), leads to a further increase of the total thorium concentration up to 10-5 M. The present results are discussed with regard to maximum Th(IV) and Pu(IV) concentrations in performance assessment calculations.

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Katja Hinz, Marcus Altmaier, Xavier Gaona, Thomas Rabung, Dieter Schild, Michael Richmann, Donald T. Reed, Evgeny V. Alekseev, and Horst Geckeis
New J. Chem., 2015, Volume 39, Number 2, Page 849
[3]
Zhong Zhou, Huisu Chen, Zongjin Li, and Huajian Li
Cement and Concrete Research, 2015, Volume 68, Page 105
[4]
F.M. Huber, S. Heck, L. Truche, M. Bouby, J. Brendlé, P. Hoess, and T. Schäfer
Geochimica et Cosmochimica Acta, 2015, Volume 148, Page 426
[5]
Richard Husar, Stephan Weiss, Christoph Hennig, René Hübner, Atsushi Ikeda-Ohno, and Harald Zänker
Environmental Science & Technology, 2015, Volume 49, Number 1, Page 665
[6]
Louise S. Natrajan, Adam N. Swinburne, Michael B. Andrews, Simon Randall, and Sarah L. Heath
Coordination Chemistry Reviews, 2014, Volume 266-267, Page 171
[7]
Harald Zänker and Christoph Hennig
Journal of Contaminant Hydrology, 2014, Volume 157, Page 87
[8]
F. J. Pereira, M. T. Díez, and A. J. Aller
Journal of Nanoparticle Research, 2013, Volume 15, Number 9
[9]
Akira Kitamura, Kenso Fujiwara, Morihiro Mihara, Mark Cowper, and Gento Kamei
Journal of Radioanalytical and Nuclear Chemistry, 2013, Volume 298, Number 1, Page 485
[10]
Marcus Altmaier, Xavier Gaona, and Thomas Fanghänel
Chemical Reviews, 2013, Volume 113, Number 2, Page 901
[11]
Christoph Hennig, Stephan Weiss, Dipanjan Banerjee, Erica Brendler, Veijo Honkimäki, Gabriel Cuello, Atsushi Ikeda-Ohno, Andreas C. Scheinost, and Harald Zänker
Geochimica et Cosmochimica Acta, 2013, Volume 103, Page 197
[12]
Kate Maher, John R. Bargar, and Gordon E. Brown
Inorganic Chemistry, 2013, Volume 52, Number 7, Page 3510
[13]
Isabell Dreissig, Stephan Weiss, Christoph Hennig, Gert Bernhard, and Harald Zänker
Geochimica et Cosmochimica Acta, 2011, Volume 75, Number 2, Page 352
[14]
Natallia Torapava, Artsiom Radkevich, Ingmar Persson, Dmitri Davydov, and Lars Eriksson
Dalton Transactions, 2012, Volume 41, Number 15, Page 4451
[15]
Chun-Chih Lin, Tsuey-Lin Tsai, and Chia-Chi Lung
Radiochimica Acta, 2012, Volume 100, Number 5, Page 329
[16]
Volker Neck, Marcus Altmaier, and Thomas Fanghänel
Comptes Rendus Chimie, 2007, Volume 10, Number 10-11, Page 959
[17]
Pascal E. Reiller, Thomas Vercouter, Lara Duro, and Christian Ekberg
Applied Geochemistry, 2012, Volume 27, Number 2, Page 414
[18]
Jennifer Jones, Mérièm Anouti, Magaly Caillon-Caravanier, Patrick Willmann, Pierre-Yves Sizaret, and Daniel Lemordant
Fluid Phase Equilibria, 2011, Volume 305, Number 2, Page 121
[19]
[20]
P. Kunze, H. Seher, W. Hauser, P.J. Panak, H. Geckeis, Th. Fanghänel, and T. Schäfer
Journal of Contaminant Hydrology, 2008, Volume 102, Number 3-4, Page 263
[21]
Amit Kumar, Manjoor Ali, Badri N. Pandey, Puthusserickal A. Hassan, and Kaushala P. Mishra
Biochimie, 2010, Volume 92, Number 7, Page 869
[22]
[23]
S. S. Kim, M. H. Baik, J. W. Choi, H. S. Shin, and J. I. Yun
Journal of Radioanalytical and Nuclear Chemistry, 2010, Volume 286, Number 1, Page 91
[24]
Callum J. Hetherington, Daniel E. Harlov, and Bartosz Budzyń
Mineralogy and Petrology, 2010, Volume 99, Number 3-4, Page 165
[25]
David S. Urch and Michael J. Welch
Annual Reports Section "A" (Inorganic Chemistry), 2005, Volume 101, Page 585
[26]
Xuefeng Wang and Lester Andrews
Physical Chemistry Chemical Physics, 2005, Volume 7, Number 22, Page 3834

Comments (0)

Please log in or register to comment.