Jump to ContentJump to Main Navigation

Since more than 50 years!

Radiochimica Acta

International Journal for chemical aspects of nuclear science and technology

Ed. by Qaim, Syed M.

12 Issues per year

IMPACT FACTOR increased in 2013: 1.411
5-year IMPACT FACTOR: 1.515
Rank 7 out of 33 in category Nuclear Science & Technology in the 2013 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR): 0.649
Source Normalized Impact per Paper (SNIP): 0.938



Pertechnetate immobilization with amorphous iron sulfide

Yongjian Liu1 / Jeff Terry2 / Silvia S. Jurisson*

1 University of Missouri-Columbia, Department of Chemistry, Columbia, U.S.A.

2 Illinois Institute of Technology, Department of Biological, Chemical, and Physical S, Chicago, U.S.A.

* Correspondence address: University of Missouri-Columbia, Department of Chemistry, 125 Chemistry Building, MO 65211 Columbia, U.S.A.,

Citation Information: Radiochimica Acta International journal for chemical aspects of nuclear science and technology. Volume 96, Issue 12, Pages 823–833, ISSN (Print) 0033-8230, DOI: 10.1524/ract.2008.1528, September 2009

Publication History

Published Online:


The reduction of pertechnetate (TcO4) with freshly prepared amorphous iron sulfide was investigated. The amorphous iron sulfide (FeS) was shown to have an elemental composition of FeS0.97 for all of the size fractions and a point of zero charge of pHpzc=7.4. Solubility studies of FeS in various buffers indicated that in the pH range 6.1–9.0, the concentrations of dissociated Fe2+ and S2− were negligible. The reductive immobilization of TcO4 with FeS was shown to be accelerated by increasing ionic strength and strongly pH dependent. At pH values below the pHpzc, the positively charged FeS surface reacted much faster with TcO4 and had higher immobilization yields relative to the negatively charged FeS surface at pH values above pHpzc. The TcO4−FeS reaction is consistent with a surface mediated reaction through ligand exchange. The TcO4−FeS reductive immobilization reaction product was characterized by X-ray absorption near edge spectroscopy (XANES), extended X-ray absorption fine structure (EXAFS), Fourier transform infrared spectroscopy (FT-IR), and energy dispersive X-ray spectroscopy (EDS) and found to be predominantly TcO2. Studies on the reductive capacity of the FeS and the long term stability of the TcO4−FeS reaction product under both anaerobic and aerobic environments shows the potential utility of the in situ gaseous (hydrogen sulfide gas) immobilization technology in solidification of TcO4 by creating a FeS permeable reaction barrier in the vadose zone.

Keywords: Technetium-99; Iron sulfide; Pertechnetate immobilization

Comments (0)

Please log in or register to comment.