A Simple Loglinear Model for Haplotype Effects in a Case-Control Study Involving Two Unphased Genotypes : Statistical Applications in Genetics and Molecular Biology

www.degruyter.com uses cookies, tags, and tracking settings to store information that help give you the very best browsing experience.
To understand more about cookies, tags, and tracking, see our Privacy Statement
I accept all cookies for the De Gruyter Online site

Jump to ContentJump to Main Navigation

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Stumpf, Michael P.H.

IMPACT FACTOR increased in 2014: 1.127
5-year IMPACT FACTOR: 1.537
Rank 47 out of 122 in category Statistics & Probability in the 2014 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2014: 0.740
Source Normalized Impact per Paper (SNIP) 2014: 0.470
Impact per Publication (IPP) 2014: 0.926

Mathematical Citation Quotient (MCQ) 2014: 0.17


A Simple Loglinear Model for Haplotype Effects in a Case-Control Study Involving Two Unphased Genotypes

Stuart G. Baker1

1National Cancer Institute

Citation Information: Statistical Applications in Genetics and Molecular Biology. Volume 4, Issue 1, ISSN (Online) 1544-6115, ISSN (Print) 2194-6302, DOI: 10.2202/1544-6115.1113, June 2005

Publication History

Published Online:

Because haplotypes may parsimoniously summarize the effect of genes on disease, there is great interest in using haplotypes in case-control studies of unphased genotype data. Previous methods for investigating haplotypes effects in case-control studies have not allowed for both of the following two scenarios that could have a large impact on results (i) departures from Hardy-Weinberg equilibrium in controls as well as cases, and (ii) an interactive effect of haplotypes and environmental covariates on the probability of disease. A new method is proposed that generalizes the model of Epstein and Satten to incorporate both (i) and (ii). Computations are relatively simple involving a single loglinear design matrix for parameters modeling the distribution of haplotype frequencies in controls, parameters modeling the effect of haplotypes and covariate-haplotype interactions on disease, and nuisance parameters required for correct inference. Based on simulations with realistic sample sizes, the method is recommended with data from two genotypes, a recessive or dominant model linking haplotypes to disease, and estimates of haplotype effects among haplotypes with a frequency greater than 10%. The methodology is most useful with candidate genotype pairs or for searching through pairs of genotypes when scenarios (i) and (ii) are likely. An example without a covariate illustrates the importance of modeling a departure from Hardy-Weinberg equilibrium in controls.

Keywords: Composite Linear Model; EM algorithm; Gene-environment interaction; Genetics; Multinomial-Poisson transformation; Newton-Raphson

Comments (0)

Please log in or register to comment.