Jump to ContentJump to Main Navigation

Statistical Applications in Genetics and Molecular Biology

Editor-in-Chief: Stumpf, Michael P.H.

6 Issues per year

IMPACT FACTOR increased in 2014: 1.127
5-year IMPACT FACTOR: 1.537
Rank 47 out of 122 in category Statistics & Probability in the 2014 Thomson Reuters Journal Citation Report/Science Edition

SCImago Journal Rank (SJR) 2014: 0.740
Source Normalized Impact per Paper (SNIP) 2014: 0.470
Impact per Publication (IPP) 2014: 0.926

Mathematical Citation Quotient (MCQ) 2014: 0.17


Fitting Boolean Networks from Steady State Perturbation Data

Anthony Almudevar1 / Matthew N. McCall2 / Helene McMurray3 / Hartmut Land4

1University of Rochester

2University of Rochester

3University of Rochester

4University of Rochester

Citation Information: Statistical Applications in Genetics and Molecular Biology. Volume 10, Issue 1, ISSN (Online) 1544-6115, ISSN (Print) 2194-6302, DOI: 10.2202/1544-6115.1727, October 2011

Publication History

Published Online:

Gene perturbation experiments are commonly used for the reconstruction of gene regulatory networks. Typical experimental methodology imposes persistent changes on the network. The resulting data must therefore be interpreted as a steady state from an altered gene regulatory network, rather than a direct observation of the original network. In this article an implicit modeling methodology is proposed in which the unperturbed network of interest is scored by first modeling the persistent perturbation, then predicting the steady state, which may then be compared to the observed data. This results in a many-to-one inverse problem, so a computational Bayesian approach is used to assess model uncertainty.

The methodology is first demonstrated on a number of synthetic networks. It is shown that the Bayesian approach correctly assigns high posterior probability to the network structure and steady state behavior. Further, it is demonstrated that where uncertainty of model features is indicated, the uncertainty may be accurately resolved with further perturbation experiments. The methodology is then applied to the modeling of a gene regulatory network using perturbation data from nine genes which have been shown to respond synergistically to known oncogenic mutations. A hypothetical model emerges which conforms to reported regulatory properties of these genes. Furthermore, the Bayesian methodology is shown to be consistent in the sense that multiple randomized applications of the fitting algorithm converge to an approximately common posterior density on the space of models. Such consistency is generally not feasible for algorithms which report only single models. We conclude that fully Bayesian methods, coupled with models which accurately account for experimental constraints, are a suitable tool for the inference of gene regulatory networks, in terms of accuracy, estimation of model uncertainty, and experimental design.

Keywords: boolean network; gene perturbation; Bayesian modeling

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Mark Noble, Margot Mayer-Pröschel, Zaibo Li, Tiefei Dong, Wanchang Cui, Christoph Pröschel, Ibro Ambeskovic, Joerg Dietrich, Ruolan Han, Yin Miranda Yang, Christopher Folts, Jennifer Stripay, Hsing-Yu Chen, and Brett M. Stevens
Free Radical Biology and Medicine, 2015, Volume 79, Page 300

Comments (0)

Please log in or register to comment.