Jump to ContentJump to Main Navigation

Tatra Mountains Mathematical Publications

The Journal of Slovak Academy of Sciences

3 Issues per year


SCImago Journal Rank (SJR): 0.141
Source Normalized Impact per Paper (SNIP): 0.239

Mathematical Citation Quotient 2013: 0.10

Open Access
VolumeIssuePage

Issues

Oscillation results for second-order neutral differential equations of mixed type

1School of Control Science and Engineering Shandong University, Jinan Shandong 250061 P. R. CHINA

2Department of Mathematics Faculty of Electrical Engineering and Informatics Technical University of Koˇsice Letn´a 9 SK–042-00 Koˇsice SLOVAKIA

This content is open access.

Citation Information: Tatra Mountains Mathematical Publications. Volume 48, Issue 1, Pages 101–116, ISSN (Print) 1210-3195, DOI: 10.2478/v10127-011-0010-8, November 2012

Publication History

Published Online:
2012-11-13

Abstract

Some oscillation theorems are established for the second-order linear neutral differential equations of mixed type

Several examples are also provided to illustrate the main results.

Keywords: oscillation; neutral differential equations of mixed type; second-order.

  • [1] HALE, J. K.: Theory of Functional Differential Equations (2nd ed.), Springer-Verlag, New York, 1977.

  • [2] PHILOS, CH. G.: Oscillation theorems for linear differential equations of second order, Arch. Math. (Basel) 53 (1989), 482-492.

  • [3] AGARWAL, R. P.-SHIEH, S. L.-YEH, C. C.: Oscillation criteria for second order retarded differential equations, Math. Comput. Modelling 26 (1997), 1-11.

  • [4] DˇZURINA, J.-STAVROULAKIS, I. P.: Oscillation criteria for second-order delay dif- ferential equations, Appl. Math. Comput. 140 (2003), 445-453.

  • [5] SUN, Y. G.-MENG, F. W.: Note on the paper of Dˇzurina and Stavroulakis, Appl. Math. Comput. 174 (2006), 1634-1641.

  • [6] BACUL´IKOV´A, B.: Oscillation criteria for second order nonlinear differential equations, Arch. Math. (Brno) 42 (2006), 141-149.

  • [7] DˇZURINA, J.: Oscillation of second-order differential equations with mixed argument, J. Math. Anal. Appl. 190 (1995), 821-828.

  • [8] ERBE, L.-KONG, Q.: Oscillation results for second order neutral differential equations, Funkcial. Ekvac. 35 (1992), 545-557.

  • [9] GRAMMATIKOPOULOS, M. K.-LADAS, G.-MEIMARIDOU, A.: Oscillation of sec- ond order neutral delay differential equations, Rad. Mat. 1 (1985), 267-274.

  • [10] GRACE, S. R.-LALLI, B. S.: Oscillation of nonlinear second order neutral delay differ- ential equations, Rad. Mat. 3 (1987), 77-84.

  • [11] ZHANG, Q. X.-YAN, J. R.-GAO, L.: Oscillation behavior of even-order nonlinear neutral differential equations with variable coefficients, Comput. Math. Appl. 59 (2010), 426-430. [Web of Science]

  • [12] WANG, Q. R.: Oscillation theorems for first-order nonlinear neutral functional differen- tial equations, Comput. Math. Appl. 39 (2000), 19-28.

  • [13] XU, Z. T.: Oscillation theorems related to averaging technique for second order Emden- -Fowler type neutral differential equations, Rocky Mountain J. Math. 38 (2008), 649-667.

  • [14] HAN, Z.-LI, T.-SUN, S.-CHEN, W.: On the oscillation of second-order neutral delay differential equations, Adv. Differ. Equ. 2010 (2010), 1-8.

  • [15] HAN, Z.-LI, T.-SUN, S.-SUN, Y.: Remarks on the paper [Appl. Math. Comput. 207 (2009), 388-396], Appl. Math. Comput. 215 (2010), 3998-4007.

  • [16] LIU, L. H.-BAI, Y. Z.: New oscillation criteria for second-order nonlinear neutral delay differential equations, J. Comput. Math. Appl. 231 (2009), 657-663.

  • [17] XU, R.-MENG, F. W.: Oscillation criteria for second order quasi-linear neutral delay differential equations, Appl. Math. Comput. 192 (2007), 216-222.

  • [18] DONG, J. G.: Oscillation behavior of second order nonlinear neutral differential equations with deviating arguments, Comput. Math. Appl. 59 (2010), 3710-3717.

  • [19] Dˇ ZURINA, J.-HUD´AKOV´A, D.: Oscillation of second order neutral delay differential equations, Math. Bohem. 134 (2009), 31-38.

  • [20] HASANBULLI, M.-ROGOVCHENKO, YU. V.: Oscillation criteria for second order nonlinear neutral differential equations, Appl. Math. Comput. 215 (2010), 4392-4399.

  • [21] BACUL´IKOV´A, B.-Dˇ ZURINA, J.: Oscillation of third-order neutral differential equa- tions, Math. Comput. Modelling 52 (2010), 215-226.

  • [22] SAKER, S. H.: Oscillation of second order neutral delay differential equations of Emden- -Fowler type, Acta Math. Hungar. 100 (2003), 37-62.

  • [23] Dˇ ZURINA, J.-BUSA, J.-AIRYAN, E. A.: Oscillation criteria for second-order differ- ential equations of neutral type with mixed arguments, Differ. Equ. 38 (2002), 137-140.

  • [24] YAN, J. R.: Oscillation of higher order neutral differential equations, J. Aust. Math. Soc. (Ser. A) 64 (1998), 73-81.

  • [25] GRACE, S. R.: On the oscillations of mixed neutral equations, J. Math. Anal. Appl. 194 (1995), 377-388.

  • [26] GRACE, S. R.: Oscillations of mixed neutral functional differential equations, Appl. Math. Comput. 68 (1995), 1-13.

  • [27] YAN, J. R.: Oscillations of higher order neutral differential equations of mixed type, Israel J. Math. 115 (2000), 125-136.

  • [28] BILCHEV, S. J.-GRAMMATIKOPOULOS, M. K.-STAVROULAKIS, I. P.: Oscilla- tion criteria in higher order neutral equations, J. Math. Anal. Appl. 183 (1994), 1-24.

  • [29] BILCHEV, S. J.-GRAMMATIKOPOULOS, M. K.- STAVROULAKIS, I. P.: Oscilla- tions of higher order neutral differential equations, J. Aust. Math. Soc. (Ser. A) 52 (1992), 261-284.

  • [30] WANG, Z. C.: A necessary and sufficient condition for the oscillation of higher order neutral equations, Tohoku. Math. J. (2) 41 (1989), 575-588.

Comments (0)

Please log in or register to comment.