Jump to ContentJump to Main Navigation

Translational Neuroscience

1 Issue per year


IMPACT FACTOR increased in 2014: 1.319

SCImago Journal Rank (SJR) 2014: 0.520
Source Normalized Impact per Paper (SNIP) 2014: 0.215
Impact per Publication (IPP) 2014: 1.000

Open Access
VolumeIssuePage

Recent developments in neuropathology of autism spectrum disorders

1Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia

2Faculty of Education and Rehabilitation Sciences, Department of Speech and Language Pathology, University of Zagreb, Zagreb, Croatia

3Fishberg Department of Neuroscience and Friedman Brain Institute, Mount Sinai School of Medicine, New York, USA

© 2011 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Translational Neuroscience. Volume 2, Issue 3, Pages 256–264, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: 10.2478/s13380-011-0024-3, September 2011

Publication History

Published Online:
2011-09-24

Abstract

Autism spectrum disorders (ASD) represent complex neurodevelopmental disorders characterized by impairments in reciprocal social interactions, abnormal development and use of language, and monotonously repetitive behaviors. With an estimated heritability of more than 90%, it is the most strongly genetically influenced psychiatric disorder of the young age. In spite of the complexity of this disorder, there has recently been much progress in the research on etiology, early diagnosing, and therapy of autism. Besides already advanced neuropathologic research, several new technological innovations, such as sleep functional MRI, diffusion tensor imaging (DTI) and proton magnetic resonance spectroscopy imaging (1H-MRS) divulged promising breakthroughs in exploring subtle morphological and neurochemical changes in the autistic brain. This review provides a comprehensive summary of morphological and neurochemical alterations in autism known to date, as well as a short introduction to the functional research that has begun to advance in the last decade. Finally, we mention the progress in establishing new standardized diagnostic measures and its importance in early recognition and treatment of ASD.

Keywords: Autism; Autism spectrum disorder

  • [1] Bailey A., Phillips W., Rutter M., Autism: towards an integration of clinical, genetic, neuropsychological, and neurobiological perspectives. J. Child Psychol. Psychiatry, 1996, 37, 89–126 http://dx.doi.org/10.1111/j.1469-7610.1996.tb01381.x [CrossRef]

  • [2] Amaral D. G., Schumann C. M., Wu Nordahl C., Neuroanatomy of autism, Trends in Neuroscience, 2008, 31, 137–145 http://dx.doi.org/10.1016/j.tins.2007.12.005 [CrossRef]

  • [3] Rice C., Prevalence of Autism Spectrum Disorders — Autism and Developmental Disabilities Monitoring Network, United States, 2006, MMWR Surveill. Summ., 2009, 58, 1–20

  • [4] Courchesne E., Pierce K., Schumann C. M., Redcay E., Buckwalter J. A., Kennedy D. P., Morgan J., Mapping Early Brain Development in Autism, Neuron, 2007, 56, 399–413 http://dx.doi.org/10.1016/j.neuron.2007.10.016 [CrossRef]

  • [5] American Psychiatric Association, Diagnostic and Statistical Manual of Mental Disorders, 4th edition, 1994

  • [6] Carper R., Courchesne E., Localized enlargement of the frontal lobe in autism, Biol. Psychiatry, 2005, 57, 126–133 http://dx.doi.org/10.1016/j.biopsych.2004.11.005 [CrossRef]

  • [7] Palmen S. J. M. C., van Engeland H., Review on structural neuroimaging findings in autism, J. Neural Transm., 2004, 111, 903–929 http://dx.doi.org/10.1007/s00702-003-0068-9 [CrossRef]

  • [8] Palmen S.J., van Engeland H., Hof P.R., Schmitz C., Neuropathological findings in autism, Brain, 2004, 127(Pt 12), 2572–2583 http://dx.doi.org/10.1093/brain/awh287 [CrossRef]

  • [9] Courchesne, E., Pierce K., Brain overgrowth in autism during a critical time in development: implications for frontal pyramidal neuron and interneuron development and connectivity, Int. J. Dev. Neurosci., 2005, 23, 153–170 http://dx.doi.org/10.1016/j.ijdevneu.2005.01.003 [CrossRef]

  • [10] Courchesne E, Carper R, Akshoomoff N., Evidence of brain overgrowth in the first year of life in autism, JAMA, 2003, 290, 337–344 http://dx.doi.org/10.1001/jama.290.3.337 [CrossRef]

  • [11] Carper R. A., Moses P., Tigue Z. D., Courchesne E., Cerebral lobes in autism: early hyperplasia and abnormal age effects, Neuroimage, 2002, 16, 1038–1051 http://dx.doi.org/10.1006/nimg.2002.1099 [CrossRef]

  • [12] Herbert M. R., Ziegler D. A., Deutsch C. K., O’Brien L. M., Lange N., Bakardjiev A., et al., Dissociations of cerebral cortex, subcortical and cerebral white matter volumes in autistic boys, Brain, 2003, 126, 1182–1192 http://dx.doi.org/10.1093/brain/awg110 [CrossRef]

  • [13] Casanova M. F., Buxhoeveden D. P., Switala A. E., Roy E., Minicolumnar pathology in autism, Neurology, 2002, 58, 428–432 [CrossRef]

  • [14] Lücke J., von der Malsburg C., Rapid processing and unsupervised learning in a model of the cortical macrocolumn, Neural Comput., 2004, 16, 501–533 http://dx.doi.org/10.1162/089976604772744893 [CrossRef]

  • [15] Casanova M. F., van Kooten I. A. J., Switala A. E., van Engeland H., Heinsen H., Steinbusch H. W. M. et al., Minicolumnar abnormalities in autism, Acta Neuropathol., 2006, 112, 287–303 http://dx.doi.org/10.1007/s00401-006-0085-5 [CrossRef]

  • [16] Rakic P., A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution, Trends Neurosci., 1995, 18, 383–388 http://dx.doi.org/10.1016/0166-2236(95)93934-P [CrossRef]

  • [17] Rakic P., Limits of neurogenesis in primates, Science, 1985, 227, 1054–1056 http://dx.doi.org/10.1126/science.3975601 [CrossRef]

  • [18] Dehaene-Lambertz G., Hertz-Pannier L., Dubois J., Nature and nurture in language acquisition: anatomical and functional brainimaging studies in infants, Trends Neurosci., 2006, 29, 367–373 http://dx.doi.org/10.1016/j.tins.2006.05.011 [CrossRef]

  • [19] Redcay E., Courchesne E., Deviant functional magnetic resonance imaging patterns of brain activity to speech in 2-3-year-old children with autism spectrum disorder, Biol. Psychiatry, 2008, 64, 589–598 http://dx.doi.org/10.1016/j.biopsych.2008.05.020 [CrossRef]

  • [20] Pierce K. Early functional brain development in autism and the promise of sleep fMRI, Brain Res., 2010, 1380, 162–174 http://dx.doi.org/10.1016/j.brainres.2010.09.028 [CrossRef]

  • [21] Dinstein I., Pierce K., Eyler L., Solso S., Malach R, Behrmann M. et al., Disrupted neural synchronization in toddlers with autism, Neuron, 2011, 70, 1218–1225 http://dx.doi.org/10.1016/j.neuron.2011.04.018 [CrossRef]

  • [22] Knaus T. A., Silver A. M., Kennedy M., Lindgren K. A., Dominick K. C., Siegel J. et al., Language laterality in autism spectrum disorder and typical controls: a functional, volumetric, and diffusion tensor MRI study, Brain Lang., 2010, 112, 113–120 http://dx.doi.org/10.1016/j.bandl.2009.11.005 [CrossRef]

  • [23] Kleinhans N. M, Richards T., Johnson L. C., Weaver K. E., Greenson J., Dawson G. et al., fMRI evidence of neural abnormalities in the subcortical face processing system in ASD Neuroimage, 2011, 54, 697–704 http://dx.doi.org/10.1016/j.neuroimage.2010.07.037 [CrossRef]

  • [24] Corbett B., Carmeana V., Ravizzae S., Wendelkenf C., Henryg M. L., Cartera C. et al., A functional and structural study of emotion and face processing in children with autism, Psychiatry Res., 2009, 173, 196–205 http://dx.doi.org/10.1016/j.pscychresns.2008.08.005 [CrossRef]

  • [25] Pierce K., Redcay E., Fusiform function in children with an autism spectrum disorder is a matter of “who”, Biol. Psychiatry, 2008, 64, 552–602 http://dx.doi.org/10.1016/j.biopsych.2008.05.013 [CrossRef]

  • [26] van Kooten I. A., Palmen S. J., von Cappeln P., Steinbusch H. W., Korr H., Heinsen H., Hof P.R., van Engeland H., Schmitz C., Neurons in the fusiform gyrus are fewer and smaller in autism, Brain, 2008, 131, 987–999 http://dx.doi.org/10.1093/brain/awn033 [CrossRef]

  • [27] Oblak A. L., Rosene D. L., Kemper T. L., Bauman M. L., Blatt G. J., Altered posterior cingulate cortical cyctoarchitecture, but normal density of neurons and interneurons in the posterior cingulate cortex and fusiform gyrus in autism, Autism Res., 2011, 4, 200–211 http://dx.doi.org/10.1002/aur.188 [CrossRef]

  • [28] Bush G., Luu P., Posner M. I., Cognitive and emotional influences in anterior cingulate cortex, Trends Cogn. Sci., 2000, 4, 215–222 http://dx.doi.org/10.1016/S1364-6613(00)01483-2 [CrossRef]

  • [29] Kennedy D. P., Courchesne E., Functional abnormalities of the default network during self- and other-reflection in autism, Soc. Cogn. Affect. Neurosci., 2008, 3, 177–190 http://dx.doi.org/10.1093/scan/nsn011 [CrossRef]

  • [30] Agam Y., Joseph R. M., Barton J. J., Manoach D. S., Reduced cognitive control of response inhibition by the anterior cingulate cortex in autism spectrum disorders, Neuroimage, 2010, 52, 336–347 http://dx.doi.org/10.1016/j.neuroimage.2010.04.010 [CrossRef]

  • [31] Kana R. K., Keller T. A., Minshew N. J., Just M. A., Inhibitory control in high-functioning autism: decreased activation and underconnectivity in inhibition networks, Biol. Psychiatry, 2007, 62, 198–206 http://dx.doi.org/10.1016/j.biopsych.2006.08.004 [CrossRef]

  • [32] Gomot M., Bernard F. A., Davis M. H., Belmonte M. K., Ashwin C., Bullmore E. T. et al., Change detection in children with autism: an auditory event-related fMRI study, Neuroimage, 2006, 29, 475–484 http://dx.doi.org/10.1016/j.neuroimage.2005.07.027 [CrossRef]

  • [33] Simms M. L., Kemper T. L., Timbie C. M., Bauman M. L., Blatt G. J., The anterior cingulate cortex in autism: heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups, Acta Neuropathol., 2009, 118, 673–684 http://dx.doi.org/10.1007/s00401-009-0568-2 [CrossRef]

  • [34] Noriuchi M., Kikuchi Y., Yoshiura T., Kira R., Shigeto H., Hara T. et al., Altered white matter fractional anisotropy and social impairment in children with autism spectrum disorder, Brain Res., 2010, 1362, 141–149 http://dx.doi.org/10.1016/j.brainres.2010.09.051 [CrossRef]

  • [35] Nimchinsky E.A., Vogt B.A., Morrison J.H., Hof P.R., Spindle neurons of the human anterior cingulate cortex, J Comp Neurol, 1995, 355(1):27–37 http://dx.doi.org/10.1002/cne.903550106 [CrossRef]

  • [36] Nimchinsky E.A., Gilissen E., Allman J.M., Perl D.P., Erwin J.M., Hof P.R., A neuronal morphologic type unique to humans and great apes, Proc Natl Acad Sci U S A. 1999, 96(9):5268–5273 http://dx.doi.org/10.1073/pnas.96.9.5268 [CrossRef]

  • [37] Allman J.M., Tetreault N.A., Hakeem A.Y., Manaye K.F., Semendeferi K., Erwin J.M., Park S., Goubert V., Hof P.R., The von Economo neurons in frontoinsular and anterior cingulate cortex in great apes and humans., Brain Struct Funct, 2010, 214(5–6):495–517 http://dx.doi.org/10.1007/s00429-010-0254-0 [CrossRef]

  • [38] Seeley W.W., Carlin D.A., Allman J.M., Macedo M.N., Bush C., Miller B.L., DeArmond S.J., Early frontotemporal dementia targets neurons unique to apes and humans, Ann Neurol, 2006, 60(6):660–667 http://dx.doi.org/10.1002/ana.21055 [CrossRef]

  • [39] Kim E.J., Sidhu M., Gaus S.E., Huang E.J., Hof P.R., Miller B.L., Dearmond S.J., Seeley W.W., Selective frontoinsular von Economo neuron and fork cell loss in early behavioral variant frontotemporal dementia, Cereb Cortex, 2011- in press

  • [40] Paul L.K., Schieffer B., Brown W. S., Social processing deficits in agenesis of the corpus callosum: narratives from the Thematic Appreciation Test, Arch. Clin. Neuropsychol., 2004, 19, 215–225 http://dx.doi.org/10.1016/S0887-6177(03)00024-6 [CrossRef]

  • [41] Brüne M., Schobel A., Karau R., Benali A., Faustmann P. M., Juckel G. et al., von Economo neuron density in the anterior cingulate cortex is reduced in early onset schizophrenia, Acta Neuropathol., 2010, 119, 771–778 http://dx.doi.org/10.1007/s00401-010-0673-2 [CrossRef]

  • [42] Santos M., Uppal N., Butti C., Wicinski B., Schmeidler J., Giannakopoulos P. et al., von Economo neurons in autism: a stereologic study of the frontoinsular cortex in children, Brain Res., 2011, 1380, 206–217 http://dx.doi.org/10.1016/j.brainres.2010.08.067 [CrossRef]

  • [43] Lombardo M. V., Baron-Cohen S., Unraveling the paradox of the autistic self, Wiley Interdiscipl. Rev. Cogn. Sci., 2010, 1, 393–403

  • [44] Adolphs R., The neurobiology of social recognition, Curr. Opin. Neurobiol., 2001, 11, 231–239 http://dx.doi.org/10.1016/S0959-4388(00)00202-6 [CrossRef]

  • [45] Sparks B. F., Friedman S. D., Shaw D. W., Aylward E. H., Echelard D., Artru A.A. et al., Brain structural abnormalities in young children with autism spectrum disorder, Neurology, 2002, 59, 184–192 [CrossRef]

  • [46] Schumann C. M., Nordahl C. W., Bridging the gap between MRI and postmortem research in autism, Brain Res., 2011, 1380, 175–186 http://dx.doi.org/10.1016/j.brainres.2010.09.061 [CrossRef]

  • [47] Schumann C. M., Hamstra J., Goodlin-Jones B. L., Lotspeich L. J., Kwon H., Buonocore M. H. et al., The amygdala is enlarged in children but not adolescents with autism; the hippocampus is enlarged at all ages, J. Neurosci., 2004, 24, 6392–6401 http://dx.doi.org/10.1523/JNEUROSCI.1297-04.2004 [CrossRef]

  • [48] Juranek J., Filipek P. A., Berenji G. R., Modahl C., Osann K., Spence M.A., Association between amygdala volume and anxiety level: magnetic resonance imaging (MRI) study in autistic children, J. Child Neurol., 2006, 21, 1051–1058 http://dx.doi.org/10.1177/7010.2006.00237 [CrossRef]

  • [49] Munson J., Dawson G., Abbott R., Faja S., Webb S. J., Friedman S. D. et al., Amygdalar volume and behavioral development in autism, Arch. Gen. Psychiatry, 2006, 63, 686–669 http://dx.doi.org/10.1001/archpsyc.63.6.686 [CrossRef]

  • [50] Amaral D. G., Schumann C. M., Nordahl C. W., Neuroanatomy of autism, Trends Neurosci., 2008, 31, 137–145 http://dx.doi.org/10.1016/j.tins.2007.12.005 [CrossRef]

  • [51] Schumann C. M., Amaral D. G., Stereological analysis of amygdala neuron number in autism, J. Neurosci., 2006, 26, 7674–7679 http://dx.doi.org/10.1523/JNEUROSCI.1285-06.2006 [CrossRef]

  • [52] Kemper T. L., Bauman M. L., The contribution of neuropathologic studies to the understanding of autism, Neurol. Clin., 1993, 11, 175–187

  • [53] Schmahmann J. D., An emerging concept. The cerebellar contribution to higher function. Arch. Neurol., 1991, 48, 1178–1187

  • [54] Courchesne E., Saitoh O., Townsend J. P., Yeung-Courchesne R., Press G. A., Lincoln A. J. et al., Cerebellar hypoplasia and hyperplasia in infantile autism, Lancet, 1994, 343, 63–64 http://dx.doi.org/10.1016/S0140-6736(94)90923-7 [CrossRef]

  • [55] Stanfield A. C., McIntosh A. M., Spencer M. D., Philip R., Gaur S., Lawrie S. M., Towards a neuroanatomy of autism: a systematic review and meta-analysis of structural magnetic resonance imaging studies, Eur. Psychiatry, 2008, 23, 289–299 http://dx.doi.org/10.1016/j.eurpsy.2007.05.006 [CrossRef]

  • [56] Piven J., Saliba K., Bailey J., Arndt S., An MRI study of autism: the cerebellum revisited, Neurology, 1997, 49, 546–551 [CrossRef]

  • [57] Scott J. A., Schumann C. M., Goodlin-Jones B. L., Amaral D. G., A comprehensive volumetric analysis of the cerebellum in children and adolescents with autism spectrum disorder, Autism Res., 2009, 2, 246–257 http://dx.doi.org/10.1002/aur.97 [CrossRef]

  • [58] Hazlett H. C., Poe M. D., Gerig G., Gimpel Smith R., Piven J., Cortical gray and white brain tissue volume in adolescents and adults with autism., Biol. Psychiatry, 2006, 59, 1–6 http://dx.doi.org/10.1016/j.biopsych.2005.06.015 [CrossRef]

  • [59] Barea-Goraly N., Kwon H., Menon V., Eliez S., Lotspeich L., Reis A.L., White matter structure in autism: preliminary evidence from diffusion tensor imaging, Biol. Psychiatry, 2004, 55, 323–326 http://dx.doi.org/10.1016/j.biopsych.2003.10.022 [CrossRef]

  • [60] Bashat D. B., Kronfeld-Duenias V., Zachor D. A., Ekstein P. M., Hendler T., Tarrasch R. et al., Accelerated maturation of white matter in young children with autism: A high b value DWI study, Neuroimage, 2007, 37, 40–47 http://dx.doi.org/10.1016/j.neuroimage.2007.04.060 [CrossRef]

  • [61] Shukla D. K., Keehn B., Müller R. A., Tract-specific analyses of diffusion tensor imaging show widespread white matter compromise in autism spectrum disorder, J. Child Psychol. Psychiatry, 2011, 52, 286–295 http://dx.doi.org/10.1111/j.1469-7610.2010.02342.x [CrossRef]

  • [62] Spence S. J., Schneider M. T., The role of epilepsy and epileptiform EEGs in autism spectrum disorders, Pediatr. Res., 2009, 65, 599–606 http://dx.doi.org/10.1203/PDR.0b013e31819e7168 [CrossRef]

  • [63] Chez M. G., Chang M., Krasne V., Coughlan C., Kominsky M., Schwartz A., Frequency of epileptiform EEG abnormalities in a sequential screening of autistic patients with no known clinical epilepsy from 1996 to 2005, Epilepsy Behav., 2006, 8, 267–271 http://dx.doi.org/10.1016/j.yebeh.2005.11.001 [CrossRef]

  • [64] Aldred S., Moore K. M., Fitzgerald M., Waring R. H., Plasma amino acid levels in children with autism and their families, J. Autism Dev. Disord., 2003, 33, 93–97 http://dx.doi.org/10.1023/A:1022238706604 [CrossRef]

  • [65] Moreno-Fuenmayor H., Borjas L., Arrieta A., Valera V., Socorro-Candanoza L., Plasma excitatory amino acids in autism, Invest. Clin., 1996, 37, 113–128

  • [66] Shinohe A., Hashimoto K., Nakamura K., Tsujii M., Iwata Y., Tsuchiya K.J. et al., Increased serum levels of glutamate in adult patients with autism, Prog. Neuropsychopharmacol. Biol. Psychiatry, 2006, 30, 1472–1477 http://dx.doi.org/10.1016/j.pnpbp.2006.06.013 [CrossRef]

  • [67] Purcell A. E., Jeon O. H., Zimmerman A. W., Blue M. E., Pevsner J., Postmortem brain abnormalities of the glutamate neurotransmitter system in autism, Neurology, 2001, 57, 1618–1628 [CrossRef]

  • [68] McDougle C. J., Erickson C. A., Stigler K. A., Posey D. J., Neurochemistry in the pathophysiology of autism, J. Clin. Psychiatry, 2005, Suppl 10, 9–18

  • [69] McCauley J. L., Olson L. M., Delahanty R., Amin T., Nurmi E. L., Organ E. L. et al., A linkage disequilibrium map of the 1-Mb 15q12 GABA(A) receptor subunit cluster and association to autism, Am. J. Med. Genet., 2004, 131B, 51–59 http://dx.doi.org/10.1002/ajmg.b.30038 [CrossRef]

  • [70] Hogart A., Wu D., LaSalle J. M., Schanen N. C., The comorbidity of autism with the genomic disorders of chromosome 15q11.2-q13, Neurobiol. Dis., 2010, 38, 181–191 http://dx.doi.org/10.1016/j.nbd.2008.08.011 [CrossRef]

  • [71] Nurmi E. L., Amin T., Olson L. M., Jacobs M. M., McCauley J. L., Lam A. Y. et al., Dense linkage disequilibrium mapping in the 15q11-q13 maternal expression domain yields evidence for association in autism, Mol. Psychiatry, 2003, 8, 624–634 http://dx.doi.org/10.1038/sj.mp.4001283 [CrossRef]

  • [72] Fatemi S. H., Reutiman T. J., Folsom T. D., Thuras P. D., GABA(A) receptor downregulation in brains of subjects with autism, J. Autism Dev. Disord., 2009, 39, 223–230 http://dx.doi.org/10.1007/s10803-008-0646-7 [CrossRef]

  • [73] Oblak A. L., Gibbs T. T., Blatt G. J., Decreased GABA(B) receptors in the cingulate cortex and fusiform gyrus in autism, J. Neurochem., 2010, 114, 1414–1423

  • [74] Fatemi S. H, Halt A. R, Stary J. M, Kanodia R, Schulz S. C, Realmuto G. R., Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol. Psychiatry, 2002, 52, 805–810 http://dx.doi.org/10.1016/S0006-3223(02)01430-0 [CrossRef]

  • [75] Bernardi S., Anagnostou E., Shen J., Kolevzon A, Buxbaum J. D., Hollander E. et al., In vivo 1H-magnetic resonance spectroscopy study of the attentional networks in autism, Brain Res., 2011, 1380, 198–205 http://dx.doi.org/10.1016/j.brainres.2010.12.057 [CrossRef]

  • [76] Ey E., Leblond C. S., Bourgeron T., Behavioral profiles of mouse models for autism spectrum disorders, Autism Res., 2011, 4, 5–16 http://dx.doi.org/10.1002/aur.175 [CrossRef]

  • [77] Bangash M. A., Park J. M., Melnikova T., Wang D., Jeon S. K., Lee D. et al., Enhanced polyubiquitination of Shank3 and NMDA receptor in a mouse model of autism, Cell, 2011, 145, 758–772 http://dx.doi.org/10.1016/j.cell.2011.03.052 [CrossRef]

  • [78] Peça J., Feliciano C., Ting J. T., Wang W., Wells M. F., Venkatraman T. N. et al., Shank3 mutant mice display autistic-like behaviours and striatal dysfunction, Nature, 2011, 472, 437–442 http://dx.doi.org/10.1038/nature09965

  • [79] Bozdagi O., Sakurai T., Papapetrou D., Wang X., Dickstein D. L., Takahashi N., et al., Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication, Mol. Autism, 2010, 1:15 http://dx.doi.org/10.1186/2040-2392-1-15 [CrossRef]

  • [80] Ellegood J., Lerch J. P., Henkelman R. M., Brain abnormalities in a Neuroligin3 R451C knockin mouse model associated with autism, Autism Res., 2011, doi: 10.1002/aur.215 [CrossRef]

  • [81] Gutierrez R. C., Hung J., Zhang Y., Kertesz A. C., Espina F. J., Colicos M. A., Altered synchrony and connectivity in neuronal networks expressing an autism-related mutation of neuroligin 3, Neuroscience, 2009, 162, 208–221 http://dx.doi.org/10.1016/j.neuroscience.2009.04.062 [CrossRef]

  • [82] Etherton M. R., Tabuchi K., Sharma M., Ko J., Südhof T. C., An autismassociated point mutation in the neuroligin cytoplasmic tail selectively impairs AMPA receptor-mediated synaptic transmission in hippocampus, EMBO J., 2011, 30, 2908–2919 http://dx.doi.org/10.1038/emboj.2011.182 [CrossRef]

  • [83] Testa-Silva G., Loebel A., Giugliano M., de Kock C.P., Mansvelder H.D., Meredith R.M., Hyperconnectivity and slow synapses during early development of medial prefrontal cortex in a mouse model for mental retardation and autism, Cereb. Cortex, 2011, Aug 19 [Epub ahead of print]_doi: 10.1093/cercor/bhr224 [CrossRef]

  • [84] Hagerman R., Au J., Hagerman P., FMR1 premutation and full mutation molecular mechanisms related to autism, J. Neurodev. Dis., 2011, 3, 211–224 http://dx.doi.org/10.1007/s11689-011-9084-5 [CrossRef]

  • [85] DeLorey T. M., Sahbaie P., Hashemi E., Li W. W., Salehi A., Clark D. J., Somatosensory and sensorimotor consequences associated with the heterozygous disruption of the autism candidate gene, Gabrb3, Behav. Brain Res., 2011, 216, 36–45 http://dx.doi.org/10.1016/j.bbr.2010.06.032 [CrossRef]

  • [86] Fatemi S. H., Co-occurrence of neurodevelopmental genes in etiopathogenesis of autism and schizophrenia, Schizophr Res, 2010, 118, 303–304 http://dx.doi.org/10.1016/j.schres.2010.01.018 [CrossRef]

  • [87] Holt R., Barnby G., Maestrini E., Bacchelli E., Brocklebank D., Sousa I. et al., Linkage and candidate gene studies of autism spectrum disorders in European populations, EU Autism MOLGEN Consortium, Eur. J. Hum. Genet., 2010, 18, 1013–1019 http://dx.doi.org/10.1038/ejhg.2010.69 [CrossRef]

  • [88] McBride K. L., Varga E. A., Pastore M. T., Prior T. W., Manickam K., Atkin J. F. et al., Confirmation study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly, Autism Res., 2010, 3, 137–141 http://dx.doi.org/10.1002/aur.132 [CrossRef]

  • [89] Leboyer M., Philippe A., Bouvard M., Guilloud-Bataille M., Bondoux D., Tabuteau F. et al. Whole blood serotonin and plasma beta-endorphin in autistic probands and their first-degree relatives, Biol. Psychiatry, 1999, 45, 158–163 http://dx.doi.org/10.1016/S0006-3223(97)00532-5 [CrossRef]

  • [90] Cook E. H. Jr., Leventhal B. L., Freedman D. X., Free serotonin in plasma: autistic children and their first-degree relatives, Biol. Psychiatry, 1988, 24, 488–491 http://dx.doi.org/10.1016/0006-3223(88)90192-8 [CrossRef]

  • [91] Hranilovic D., Bujas-Petkovic Z., Vragovic R., Vuk T., Hock K., Jernej B., Hyperserotonemia in adults with autistic disorder, J. Autism Dev. Disord., 2007, 37, 1934–1940 http://dx.doi.org/10.1007/s10803-006-0324-6 [CrossRef]

  • [92] Kolevzon A., Newcorn J. H., Kryzak L., Chaplin W., Watner D., Hollander E. et al., Relationship between whole blood serotonin and repetitive behaviors in autism, Psychiatry Res., 2010, 175, 274–276 http://dx.doi.org/10.1016/j.psychres.2009.02.008 [CrossRef]

  • [93] Brunton P.J., Russell J.A., The expectant brain: adapting for motherhood. Nat Rev Neurosci, 2008, 9(1), 11–25 http://dx.doi.org/10.1038/nrn2280 [CrossRef]

  • [94] Neumann I.D., Brain oxytocin: a key regulator of emotional and social behaviours in both females and males, J Neuroendocrinol, 2008, 20(6):858–65 http://dx.doi.org/10.1111/j.1365-2826.2008.01726.x [CrossRef]

  • [95] Meyer-Lindenberg A., Domes G., Kirsch P., Heinrichs M., Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine., Nat Rev Neurosci, 2011, 12(9), 524–538 doi: 10.1038/nrn3044 http://dx.doi.org/10.1038/nrn3044 [CrossRef]

  • [96] Insel T. R., O’Brien D. J., Leckman J. F., Oxytocin, vasopressin, and autism: is there a connection?, Biol. Psychiatry, 1999, 45, 145–157 http://dx.doi.org/10.1016/S0006-3223(98)00142-5 [CrossRef]

  • [97] Ferguson J. N, Young L. J, Hearn E. F, Matzuk M. M, Insel T. R, Winslow J. T., Social amnesia in mice lacking the oxytocin gene, Nat. Genet., 2000, 25, 284–288 http://dx.doi.org/10.1038/77040 [CrossRef]

  • [98] Šešo-Šimić Đ., Sedmak G., Hof P.R., Šimić G., Recent advances in the neurobiology of attachment behavior, Transl. Neurosci., 2010, 2, 148–159

  • [99] Gale S., Ozonoff S., Lainhart J., Brief report: pitocin induction in autistic and nonautistic individuals, J. Autism Dev. Disord., 2003, 33, 205–208 http://dx.doi.org/10.1023/A:1022951829477 [CrossRef]

  • [100] Insel T. R., A neurobiological basis of social attachment, Am. J. Psychiatry, 1997, 154, 726–735

  • [101] Lotspeich L. J., Kwon H., Schumann C. M., Fryer S. L., Goodlin-Jones B. L., Buonocore M. H. et al., Investigation of neuroanatomical differences between autism and Asperger syndrome, Arch. Gen. Psychiatry, 2004, 61, 291–298 http://dx.doi.org/10.1001/archpsyc.61.3.291 [CrossRef]

  • [102] Luyster R., Gotham K., Guthrie W., Coffing M., Petrak R., Pierce K. et al., The autism diagnostic observation schedule-toddler module: a new module of a standardized diagnostic measure for autism spectrum disorders, J. Autism Dev. Disord., 2009, 39, 1305–1320 http://dx.doi.org/10.1007/s10803-009-0746-z [CrossRef]

  • [103] Pierce K., Carter C., Weinfeld M., Desmond J., Hazin R., Bjork R. et al., Detecting, studying, and treating autism early: the one-year wellbaby check-up approach, J. Pediatr., 2011, 159, 458–465 http://dx.doi.org/10.1016/j.jpeds.2011.02.036 [CrossRef]

  • [104] Uppal N., Papapetrou D., Santos M., Bozdagi O, Buxbaum J. D., Hof P. R., Autism spectrum disorders: neuropathology and animal models, Envir. Health Perspect., submitted

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ryan R. Green, Erin D. Bigler, Alyson Froehlich, Molly B. D. Prigge, Brittany G. Travers, Annahir N. Cariello, Jeffrey S. Anderson, Brandon A. Zielinski, Andrew Alexander, Nicholas Lange, and Janet E. Lainhart
Child Neuropsychology, 2015, Page 1
[2]
Marc Fakhoury
International Journal of Developmental Neuroscience, 2015, Volume 43, Page 70
[3]
Haley Trontel, Tyler Duffield, Erin Bigler, Alyson Froehlich, Molly Prigge, Jared Nielsen, Jason Cooperrider, Annahir Cariello, Brittany Travers, Jeffrey Anderson, Brandon Zielinski, Andrew Alexander, Nicholas Lange, and Janet Lainhart
Behavioral Sciences, 2013, Volume 3, Number 3, Page 348
[4]
Tyler C. Duffield, Haley G. Trontel, Erin D. Bigler, Alyson Froehlich, Molly B. Prigge, Brittany Travers, Ryan R. Green, Annahir N. Cariello, Jason Cooperrider, Jared Nielsen, Andrew Alexander, Jeffrey Anderson, P. Thomas Fletcher, Nicholas Lange, Brandon Zielinski, and Janet Lainhart
Journal of Clinical and Experimental Neuropsychology, 2013, Volume 35, Number 8, Page 867
[5]
Franco Cauda, Tommaso Costa, Sara Palermo, Federico D'Agata, Matteo Diano, Francesca Bianco, Sergio Duca, and Roberto Keller
Human Brain Mapping, 2014, Volume 35, Number 5, Page 2073
[6]
Laura Pina-Camacho, Sonia Villero, Leticia Boada, David Fraguas, Joost Janssen, Maria Mayoral, Cloe Llorente, Celso Arango, and Mara Parellada
Research in Autism Spectrum Disorders, 2013, Volume 7, Number 2, Page 333
[7]
Andrea Diaz-Stransky and Elaine Tierney
American Journal of Medical Genetics Part C: Seminars in Medical Genetics, 2012, Volume 160C, Number 4, Page 295
[8]
Brian C. Kelley, Paul M. Arnold, John A. Grant, and Kathy L. Newell
Journal of Neurosurgery: Pediatrics, 2012, Volume 10, Number 2, Page 121

Comments (0)

Please log in or register to comment.