Jump to ContentJump to Main Navigation

Translational Neuroscience

1 Issue per year


IMPACT FACTOR increased in 2013: 0.716

SCImago Journal Rank (SJR): 0.361
Source Normalized Impact per Paper (SNIP): 0.170

Open Access
VolumeIssuePage

Expression of 5HT-related genes after perinatal treatment with 5HT agonists

1University of Zagreb

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Translational Neuroscience. Volume 4, Issue 2, Pages 165–171, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: 10.2478/s13380-013-0124-3, June 2013

Publication History

Published Online:
2013-06-09

Abstract

Serotonin (5HT) is a biologically active amine with diverse roles in the mammalian organism. Developmental alterations in 5HT homeostasis could lead to exposure of the developing brain to non-optimal serotonin concentrations that may result in developmental and behavioral deficits. In order to explore the molecular basis of the effects of developmental disturbances on 5HT metabolism on adult central 5HT homeostasis, observed in our previous studies, we measured changes in gene expression of the neuronal 5HT-regulating proteins in adult animals after perinatal treatment with the immediate 5HT precursor 5-hydroxytryptophan (5HTP, 25 mg/kg), or monoamine oxidase (MAO) inhibitor tranylcypromine (TCP 2 mg/kg), during the period of the most intensive development of 5HT neurons — from gestational day 12 until postnatal day 21. Adult animals were sacrificed and the relative mRNA levels for tryptophan hydroxylase 2, MAO A, MAO B, receptors 5HT1A and 5HT2A, 5HT transporter (5HTT) and vesicular monoamine transporter (VMAT) were determined in the raphe nuclei region and prefrontal cortex using Real-Time Relative qRT-PCR. In comparison to the saline treated animals, treatment with 5HTP caused mild but significant increase in MAO A and MAO B mRNA abundance. TCP-treated animals, besides an increase in mRNA abundance for both MAO genes, displayed significantly increased 5HTT and VMAT2 mRNA levels and significantly decreased 5HT1A receptor mRNA levels. Our results suggest that perinatal exposure of rats to 5HTP, and especially TCP, induces long-lasting/permanent changes in the expression of 5HT-regulating genes, that presumably underlie 5HT-related neurochemical and behavioral changes in adult animals.

Keywords: Serotonin; Tranylcypromine; 5-hydroxytryptophan; mRNA; Rat brain; Perinatal treatment

  • [1] Berger M., Gray J.A., Roth B.L., The expanded biology of serotonin, Annu. Rev. Med., 2009, 60, 355–366 http://dx.doi.org/10.1146/annurev.med.60.042307.110802 [Web of Science] [CrossRef]

  • [2] Whitaker-Azmitia P.M., Serotonin and brain development: role in human developmental diseases, Brain Res. Bull., 2001, 56, 479–485 http://dx.doi.org/10.1016/S0361-9230(01)00615-3 [CrossRef]

  • [3] Catalano M., Functionally gene-linked polymorphic regions and genetically controlled neurotransmitters metabolism, Eur. Neuropsychopharmacol., 2001, 11, 431–439 http://dx.doi.org/10.1016/S0924-977X(01)00120-1 [CrossRef]

  • [4] Lesch K.P., Variation of serotonergic gene expression: neurodevelopment and the complexity of response to psychopharmacologic drugs, Eur. Neuropsychopharm., 2001, 11, 457–474 http://dx.doi.org/10.1016/S0924-977X(01)00123-7 [CrossRef]

  • [5] Racke K., Reimann A., Schwörer H., Kilbinger H., Regulation of 5-HT release from enterochromaffin cells, Behav. Brain Res., 1995, 73, 83–87 http://dx.doi.org/10.1016/0166-4328(96)00075-7 [CrossRef]

  • [6] Walther D.J., Bader M., A unique central tryptophan hydroxylase isoform, Biochem. Pharmacol., 2003, 66, 1673–1680 http://dx.doi.org/10.1016/S0006-2952(03)00556-2 [CrossRef]

  • [7] Henry J.P., Sagné C., Bedet C., Gasnier B., The vesicular monoamine transporter: from chromaffin granule to brain, Neurochem. Int., 1998, 32, 227–246 http://dx.doi.org/10.1016/S0197-0186(97)00092-2 [CrossRef]

  • [8] Torres G.E., Gainetdinov R.R., Caron M.G., Plasma membrane monoamine transporters: structure, regulation and function, Nat. Rev. Neurosci., 2003, 4, 13–25 http://dx.doi.org/10.1038/nrn1008 [CrossRef]

  • [9] Hoyer D., Hannon J.P., Martin G.R., Molecular, pharmacological and functional diversity of 5-HT receptors, Pharmacol. Biochem. Behav., 2002, 71, 533–554 http://dx.doi.org/10.1016/S0091-3057(01)00746-8 [CrossRef]

  • [10] Schwörer H., Ramadori G., Autoreceptors can modulate 5-hydroxytryptamine release from porcine and human small intestine in vitro, Naunyn Schmiedebergs Arch. Pharmacol., 1998, 357, 548–552 http://dx.doi.org/10.1007/PL00005206 [CrossRef]

  • [11] Billett E., Monoamine oxidase (MAO) in human peripheral tissues, Neurotoxicology, 2004, 25, 139–148 http://dx.doi.org/10.1016/S0161-813X(03)00094-9 [CrossRef]

  • [12] Davies K., Richardson G., Akmentin W., Acuff V., Fenstermacher J., The microarchitecture of cerebral vessels, In: Courad P., Scherman D. (Eds.), Biology and physiology of the blood-brain barrier: transport, cellular interactions, and brain pathologies, Plenum Press, New York, 1996, 83–91 http://dx.doi.org/10.1007/978-1-4757-9489-2_15 [CrossRef]

  • [13] Cote F., Fligny C., Bayard E., Launay J.-M., Gershon M.D., Mallet J., et al., Maternal serotonin is crucial for murine embryonic development, Proc. Natl. Acad. Sci. USA, 2007, 104, 329–334 http://dx.doi.org/10.1073/pnas.0606722104 [CrossRef]

  • [14] Bonnin A., Goeden N., Chen K., Wilson M.L., King J., Shih J.C., et al., A transient placental source of serotonin for the fetal forebrain, Nature, 2011, 472, 347–350 http://dx.doi.org/10.1038/nature09972 [CrossRef] [Web of Science]

  • [15] Hadjikhani N., Serotonin, pregnancy and increased autism prevalence: is there a link?, Med. Hypotheses, 2010, 74, 880–883 http://dx.doi.org/10.1016/j.mehy.2009.11.015 [CrossRef] [Web of Science]

  • [16] Nijenhuis C.M., Ter Horst P.G.J., De Jong-van den Berg L.T.W., Wilffert B., Disturbed development of the enteric nervous system after in utero exposure of selective serotonin re-uptake inhibitors and tricyclic antidepressants. Part 1: Literature review, Br. J. Clin. Pharmacol., 2012, 73, 16–26 http://dx.doi.org/10.1111/j.1365-2125.2011.04075.x [Web of Science]

  • [17] Lauder J.M., Ontogeny of the serotonergic system in the rat: serotonin as a developmental signal, Ann. NY Acad. Sci., 1990, 600, 297–313 http://dx.doi.org/10.1111/j.1749-6632.1990.tb16891.x [CrossRef]

  • [18] Blažević S., Dolenec P., Hranilović D., Physiological consequences of perinatal treatment of rats with 5-hydroxytryptophan, Period. Biol., 2011, 113, 81–86

  • [19] Hranilović D., Blažević S., Ivica N., Čičin-Šain L., Oreškovic D., The effects of the perinatal treatment with 5-hydroxytryptophan or tranylcypromine on the peripheral and central serotonin homeostasis in adult rats, Neurochem. Int., 2011, 59, 202–207 http://dx.doi.org/10.1016/j.neuint.2011.05.003 [CrossRef] [Web of Science]

  • [20] Blažević S., Jurčić Z., Hranilović D., Perinatal treatment of rats with MAO inhibitor tranylcypromine, Transl. Neurosci., 2010, 1, 49–54 http://dx.doi.org/10.2478/v10134-010-0006-y [Web of Science] [CrossRef]

  • [21] Blazević S., Čolić L., Čulig L., Hranilović D., Anxiety-like behavior and cognitive flexibility in adult rats perinatally exposed to increased serotonin concentrations, Behav. Brain Res., 2012, 230, 175–181 http://dx.doi.org/10.1016/j.bbr.2012.02.001 [Web of Science] [CrossRef]

  • [22] Paxinos G., Watson C., The rat brain in stereotaxic coordinates, 6th ed., Academic Press, London, 2007, 456

  • [23] Birdsall T.C., 5-Hydroxytryptophan: a clinically-effective serotonin precursor, Altern. Med. Rev., 1998, 3, 271–280

  • [24] Celada P., Artigas F., Monoamine oxidase inhibitors increase preferentially extracellular 5-hydroxytryptamine in the midbrain raphe nuclei. A brain microdialysis study in the awake rat, Naunyn Schmiedebergs Arch. Pharmacol., 1993, 347, 583–590 http://dx.doi.org/10.1007/BF00166940

  • [25] Green A.R., Youdim M.B., Effects of monoamine oxidase inhibition by clorgyline, deprenil or tranylcypromine on 5-hydroxytryptamine concentrations in rat brain and hyperactivity following subsequent tryptophan administration, Br. J. Pharmacol., 1975, 55, 415–422 http://dx.doi.org/10.1111/j.1476-5381.1975.tb06946.x

  • [26] Johnston J.P., Some observations upon a new inhibitor of monoamine oxidase in brain tissue, Biochem. Pharmacol., 1968, 17, 1285–1297 http://dx.doi.org/10.1016/0006-2952(68)90066-X [CrossRef]

  • [27] Sleight A.J., Marsden C.A., Martin K.F., Palfreyman M.G., Relationship between extracellular 5-hydroxytryptamine and behaviour following monoamine oxidase inhibition and L-tryptophan, Drugs, 1988, 93, 303–310

  • [28] Lesch K.P., Wolozin B.L., Murphy D.L., Riederer P., Primary structure of the human platelet serotonin uptake site: identity with the brain serotonin transporter, J. Neurochem., 1993, 60, 2319–2322 http://dx.doi.org/10.1111/j.1471-4159.1993.tb03522.x [CrossRef]

  • [29] Carkaci-Salli N., Salli U., Kuntz-Melcavage K.L., Pennock M.M., Ozgen H., Tekin I., et al., TPH2 in the ventral tegmental area of the male rat brain, Brain Res. Bull., 2011, 84, 376–380 http://dx.doi.org/10.1016/j.brainresbull.2011.01.006 [CrossRef]

  • [30] Chalmers D.T., Watson S.J., Comparative anatomical distribution of 5-HT1A receptor mRNA and 5-HT1A binding in rat brain—a combined in situ hybridisation/in vitro receptor autoradiographic study, Brain Res., 1991, 561, 51–60 http://dx.doi.org/10.1016/0006-8993(91)90748-K [CrossRef]

  • [31] Mengod G., Pompeiano M., MartÍnez-Mir M.I., Palacios J.M., Localization of the mRNA for the 5-HT2 receptor by in situ hybridization histochemistry. Correlation with the distribution of receptor sites, Brain Res., 1990, 524, 139–143 http://dx.doi.org/10.1016/0006-8993(90)90502-3 [CrossRef]

  • [32] Jahng J., Houpt T., Wessel T., Localization of monoamine oxidase A and B mRNA in the rat brain by in situ hybridization, Synapse, 1997, 36, 30–36 http://dx.doi.org/10.1002/(SICI)1098-2396(199701)25:1<30::AID-SYN4>3.0.CO;2-G [CrossRef]

  • [33] Hansson S.R., Mezey E., Hoffman B.J., Ontogeny of vesicular monoamine transporter mRNAs VMAT1 and VMAT2. II. Expression in neural crest derivatives and their target sites in the rat, Dev. Brain Res., 1998, 110, 159–174 http://dx.doi.org/10.1016/S0165-3806(98)00103-5 [CrossRef]

  • [34] Owesson C.A., Hopwood S.E., Callado L.F., Seif I., McLaughlin D.P., Stamford J. A., Altered presynaptic function in monoaminergic neurons of monoamine oxidase-A knockout mice, Eur. J. Neurosci., 2002, 15, 1516–1522 http://dx.doi.org/10.1046/j.1460-9568.2002.01986.x [CrossRef]

  • [35] Holschneider D.P., Chen K., Seif I., Shih J.C., Biochemical, behavioral, physiologic, and neurodevelopmental changes in mice deficient in monoamine oxidase A or B, Brain Res., 2001, 56, 453–462

  • [36] Thompson B., Stanwood G., Pleiotropic effects of neurotransmission during development: modulators of modularity, J. Autism Dev. Disord., 2009, 39, 260–268 http://dx.doi.org/10.1007/s10803-008-0624-0 [Web of Science] [CrossRef]

  • [37] Lesch K.P., Moessner R., Genetically driven variation in serotonin uptake: is there a link to affective spectrum, neurodevelopmental, and neurodegenerative disorders?, Biol. Psychiat., 1998, 44, 179–192 http://dx.doi.org/10.1016/S0006-3223(98)00121-8 [CrossRef]

  • [38] Baum A.L., Misri S., Selective serotonin-reuptake inhibitors in pregnancy and lactation, Harvard Rev. Psychiat., 1996, 4, 117–125 http://dx.doi.org/10.3109/10673229609030534 [CrossRef]

  • [39] Borue X., Chen J., Condron B.G., Developmental effects of SSRIs: lessons learned from animal studies, Int. J. Dev. Neurosci., 2007, 25, 341–347 http://dx.doi.org/10.1016/j.ijdevneu.2007.06.003 [CrossRef]

  • [40] Frederick A., Stanwood G., Drugs, biogenic amine targets and the developing brain, Dev. Neurosci., 2009, 31, 7–22 http://dx.doi.org/10.1159/000207490 [Web of Science] [CrossRef]

  • [41] Henderson M., McMillen B., Changes in dopamine, serotonin and their metabolites in discrete brain areas of rat offspring after in utero exposure to cocaine or related drugs, Teratology, 2005, 48, 421–430 http://dx.doi.org/10.1002/tera.1420480506 [CrossRef]

  • [42] Kelly P.A.T., Ritchie I.M., Quate L., McBean D.E., Olverman H.J., Functional consequences of perinatal exposure to 3,4-methylenedioxymethamphetamine in rat brain, Br. J. Pharmacol., 2002, 137, 963–970 http://dx.doi.org/10.1038/sj.bjp.0704961 [CrossRef]

  • [43] Pawluski J., Perinatal selective serotonin reuptake inhibitor exposure: impact on brain development and neural plasticity, Neuroendocrinology, 2012, 95, 39–46 http://dx.doi.org/10.1159/000329293 [CrossRef] [Web of Science]

  • [44] Lauder J.M., Liu J., Grayson D.R., In utero exposure to serotonergic drugs alters neonatal expression of 5-HT(1A) receptor transcripts: a quantitative RT-PCR study, Int. J. Dev. Neurosci., 2000, 18, 171–176 http://dx.doi.org/10.1016/S0736-5748(99)00085-4 [CrossRef]

  • [45] Hranilović D., Novak R., Babić M., Novokmet M., Bujas-Petković Z., Jernej B., et al., Hyperserotonemia in autism: the potential role of 5HT-related gene variants, Coll. Antropol., 2008, 32, 75–80

  • [46] Hranilović D., Bujas-Petković Z., Tomičić M., Bordukalo-Nikšić T., Blažević S., Čičin-Šain L., Hyperserotonemia in autism: activity of 5HT-associated platelet proteins, J. Neural. Transm., 2009, 116, 493–501 http://dx.doi.org/10.1007/s00702-009-0192-2 [Web of Science] [CrossRef]

Comments (0)

Please log in or register to comment.