Towards dynamical network biomarkers in neuromodulation of episodic migraine : Translational Neuroscience Jump to ContentJump to Main Navigation
Show Summary Details

Translational Neuroscience


IMPACT FACTOR 2015: 1.012

SCImago Journal Rank (SJR) 2015: 0.704
Source Normalized Impact per Paper (SNIP) 2015: 0.286
Impact per Publication (IPP) 2015: 1.155

Open Access
Online
ISSN
2081-6936
See all formats and pricing



Select Volume and Issue
Loading journal volume and issue information...

Towards dynamical network biomarkers in neuromodulation of episodic migraine

1Department of Physics, AG NLD Cardiovascular Physics, Humboldt-Universität zu Berlin, Robert-Koch-Platz 4, 10115, Berlin, Germany

2Center for Experimental Medicine, Department of Systems Neuroscience, Universitätsklinikum Hamburg-Eppendorf, 20246, Hamburg, Germany

3FIRST, Aihara Innovative Mathematical Modelling Project, Japan Science and Technology Agency, Tokyo, Japan

4Collaborative Research Center for Innovative Mathematical Modelling, Institute of Industrial Science, University of Tokyo, Tokyo, 153-8505, Japan

5Potsdam Institute for Climate Impact Research, 14473, Potsdam, Germany

6Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, UK

© 2013 Versita Warsaw. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Translational Neuroscience. Volume 4, Issue 3, Pages 282–294, ISSN (Online) 2081-6936, ISSN (Print) 2081-3856, DOI: 10.2478/s13380-013-0127-0, September 2013

Publication History

Published Online:
2013-09-13

Abstract

Computational methods have complemented experimental and clinical neurosciences and led to improvements in our understanding of the nervous systems in health and disease. In parallel, neuromodulation in form of electric and magnetic stimulation is gaining increasing acceptance in chronic and intractable diseases. In this paper, we firstly explore the relevant state of the art in fusion of both developments towards translational computational neuroscience. Then, we propose a strategy to employ the new theoretical concept of dynamical network biomarkers (DNB) in episodic manifestations of chronic disorders. In particular, as a first example, we introduce the use of computational models in migraine and illustrate on the basis of this example the potential of DNB as early-warning signals for neuromodulation in episodic migraine.

Keywords: Migraine; Neuromodulation; Nonlinear dynamics; Biomarkers; Spreading depression; Hodgkin-Huxley models; Central pattern generator; Pain

  • [1] Mackey M.C., Milton J.G., Dynamical diseases, Ann. N. Y. Acad. Sci., 1987, 504, 16–32 http://dx.doi.org/10.1111/j.1749-6632.1987.tb48723.x [CrossRef]

  • [2] Milton J., Jung P., Epilepsy as a dynamic disease, Biological and medical physics series, Springer, Berlin, 2003 http://dx.doi.org/10.1007/978-3-662-05048-4 [CrossRef]

  • [3] Scheer M., Bascompte J., Brock W.A., Brovkin V., Carpenter S.R., Dakos V., et al., Early-warning signals for critical transitions, Nature, 2009, 461, 53–59 http://dx.doi.org/10.1038/nature08227 [CrossRef]

  • [4] Chen L., Liu R., Liu Z.P., Li M., Aihara K., Detecting early-warning signals for sudden deterioration of complex diseases by dynamical network biomarkers, Sci. Rep., 2012, 2, 342

  • [5] Liu R., Li M., Liu Z.P., Wu J., Chen L., Aihara K., Identifying critical transitions and their leading biomolecular networks in complex diseases, Sci. Rep., 2012, 2, 813

  • [6] Liu R., Wang X., Aihara K., Chen L., Early diagnosis of complex diseases by molecular biomarkers, network biomarkers, and dynamical network biomarkers, Med. Res. Rev., 2013, Epub ahead of print, doi: 10.1002/med.21293 [CrossRef]

  • [7] Liu R., Aihara K., Chen L., Dynamical network biomarkers for identifying critical transitions and their driving networks of biologic processes, Quant. Biol., 2013, 1, 105–114 http://dx.doi.org/10.1007/s40484-013-0008-0 [CrossRef]

  • [8] Aihara K., Suzuki H., Theory of hybrid dynamical systems and its applications to biological and medical systems, Philos. Trans. A Math. Phys. Eng. Soc., 2010, 368, 4893–4914 http://dx.doi.org/10.1098/rsta.2010.0237 [CrossRef]

  • [9] Schiff S.J., Towards model-based control of Parkinson’s disease, Philos. Trans. A Math. Phys. Eng. Soc., 2010, 368, 2269–2308 http://dx.doi.org/10.1098/rsta.2010.0050 [CrossRef]

  • [10] Terman D., Rubin J.E., Yew A.C., Wilson C.J., Activity patterns in a model for the subthalamopallidal network of the basal ganglia, J. Neurosci., 2002, 22, 2963–2976

  • [11] Rubin J.E., McIntyre C.C., Turner R.S., Wichmann T, Basal ganglia activity patterns in parkinsonism and computational modeling of their downstream effects, Eur. J. Neurosci., 2012, 36, 2213–2228 http://dx.doi.org/10.1111/j.1460-9568.2012.08108.x [CrossRef]

  • [12] Dahlem M.A., Migraine generator network and spreading depression dynamics as neuromodulation targets in episodic migraine, Chaos, 2013, (in press) [CrossRef]

  • [13] Magis D., Schoenen J., Advances and challenges in neurostimulation for headaches, Lancet Neurol., 2012, 11, 708–719 http://dx.doi.org/10.1016/S1474-4422(12)70139-4 [CrossRef]

  • [14] Koehler P.J., Boes C.J., A history of non-drug treatment in headache, particularly migraine, Brain, 2010, 133, 2489–2500 http://dx.doi.org/10.1093/brain/awq170 [CrossRef]

  • [15] Wiener N., Cybernetics; or control and communication in the animal and the machine, John Wiley & Sons, New York, 1948

  • [16] Schiff S.J., Neural control engineering: the emerging intersection between control theory and neuroscience, MIT Press, Cambridge, MA, 2011

  • [17] Goodfellow M., Schindler K., Baier G., Self-organised transients in a neural mass model of epileptogenic tissue dynamics, Neuroimage, 2012, 59, 2644–2660 http://dx.doi.org/10.1016/j.neuroimage.2011.08.060 [CrossRef]

  • [18] Suffczynski P., Lopes da Silva F.H., Parra J., Velis D.N., Bouwman B.M., van Rijn C.M., et al., Dynamics of epileptic phenomena determined from statistics of ictal transitions, IEEE Trans. Biomed. Eng., 2006, 53, 524–532 http://dx.doi.org/10.1109/TBME.2005.869800 [CrossRef]

  • [19] Gin N.J., Ruggiero L., Lipton R.B., Silberstein S.D., Tvedskov J.F., Olesen J., et al., Premonitory symptoms in migraine: an electronic diary study, Neurology, 2003, 60, 935–940 http://dx.doi.org/10.1212/01.WNL.0000052998.58526.A9 [CrossRef]

  • [20] Charles A., Migraine is not primarily a vascular disorder, Cephalalgia, 2012, 32, 431–432 http://dx.doi.org/10.1177/0333102412441717 [CrossRef]

  • [21] Olesen J., The international classication of headache disorders, n3rd edition (beta version), Cephalalgia, 2013, 33, 629–808 http://dx.doi.org/10.1177/0333102413487610 [CrossRef]

  • [22] Vincent M., Hadjikhani N., Migraine aura and related phenomena: beyond scotomata and scintillations, Cephalalgia, 2007, 27, 1368–1377 http://dx.doi.org/10.1111/j.1468-2982.2007.01388.x [CrossRef]

  • [23] Karatas H., Erdener S.E., Gursoy-Ozdemir Y., Lule S., Eren-Kocak E., Sen Z.D., et al., Spreading depression triggers headache by activating neuronal Panx1 channels, Science, 2013, 339, 1092–1095 http://dx.doi.org/10.1126/science.1231897 [CrossRef]

  • [24] Rasmussen B.K., Olesen J., Migraine with aura and migraine without aura: an epidemiological study, Cephalalgia, 1992, 12, 221–228 http://dx.doi.org/10.1046/j.1468-2982.1992.1204221.x [CrossRef]

  • [25] Ahn A.H., On the temporal relationship between throbbing migraine pain and arterial pulse, Headache, 2010, 50, 1507–1510 http://dx.doi.org/10.1111/j.1526-4610.2010.01765.x [CrossRef]

  • [26] Mo J., Maizels M., Ding M., Ahn A.H., Does throbbing pain have a brain signature?, Pain, 2013, 154, 1150–1155 http://dx.doi.org/10.1016/j.pain.2013.02.013 [CrossRef]

  • [27] Brandes J.L., The migraine cycle: patient burden of migraine during and between migraine attacks, Headache, 2008, 48, 430–441 http://dx.doi.org/10.1111/j.1526-4610.2007.01004.x [CrossRef]

  • [28] Weiller C., May A., Limmroth V., Juptner M., Kaube H., Schayck R.V., et al., Brain stem activation in spontaneous human migraine attacks, Nat. Med., 1995, 1, 658–660 http://dx.doi.org/10.1038/nm0795-658 [CrossRef]

  • [29] Welch K., Nagesh V., Aurora S.K., Gelman N., Periaqueductal gray matter dysfunction in migraine: cause or the burden of illness?, Headache, 2001, 41, 629–637 http://dx.doi.org/10.1046/j.1526-4610.2001.041007629.x [CrossRef]

  • [30] Olesen J., Larsen B., and Lauritzen M., Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine, Ann. Neurol., 1981, 9, 344–352 http://dx.doi.org/10.1002/ana.410090406 [CrossRef]

  • [31] Hadjikhani N., Sanchez Del Rio M., Wu O., Schwartz D., Bakker D., Fischl B., et al., Mechanisms of migraine aura revealed by functional MRI in human visual cortex, Proc. Natl. Acad. Sci. USA, 2001, 98, 4687–4692 http://dx.doi.org/10.1073/pnas.071582498 [CrossRef]

  • [32] Lauritzen M., Pathophysiology of the migraine aura. The spreading depression theory, Brain, 1994, 117, 199–210 http://dx.doi.org/10.1093/brain/117.1.199 [CrossRef]

  • [33] Hansen J.M., Lipton R.B., Dodick D.W., Silberstein S.D., Saper J.R., Aurora S.K., et al., Migraine headache is present in the aura phase: a prospective study, Neurology, 2012, 79, 2044–2049 http://dx.doi.org/10.1212/WNL.0b013e3182749eed [CrossRef]

  • [34] Noseda R., Kainz V., Jakubowski M., Gooley J.J., Saper C.B., Digre K., et al., A neural mechanism for exacerbation of headache by light, Nat. Neurosci., 2010, 13, 239–245 http://dx.doi.org/10.1038/nn.2475 [CrossRef]

  • [35] Summ O., Charbit A.R., Andreou A.P., Goadsby P.J., Modulation of nocioceptive transmission with calcitonin gene-related peptide receptor antagonists in the thalamus, Brain, 2010, 133, 2540–2548 http://dx.doi.org/10.1093/brain/awq224 [CrossRef]

  • [36] Reshodko L.V., Bures J., Computer simulation of reverberating spreading depression in a network of cell automata, Biol. Cybern., 1975, 18, 181–189 http://dx.doi.org/10.1007/BF00326688 [CrossRef]

  • [37] Dahlem M.A., Müller S.C., Self-induced splitting of spiral-shaped spreading depression waves in chicken retina, Exp. Brain Res., 1997, 115, 319–324 http://dx.doi.org/10.1007/PL00005700 [CrossRef]

  • [38] Tuckwell H.C., Miura R.M., A mathematical model for spreading cortical depression, Biophys. J., 1978, 23, 257–276 http://dx.doi.org/10.1016/S0006-3495(78)85447-2 [CrossRef]

  • [39] Miura R.M., Huang H., Wylie J.J., Cortical spreading depression: an enigma, Eur. Phys. J. Spec. Top., 2007, 147, 287–302 http://dx.doi.org/10.1140/epjst/e2007-00214-8 [CrossRef]

  • [40] Somjen G.G., Mechanisms of spreading depression and hypoxic spreading depression-like depolarization, Physiol. Rev., 2001, 81, 1065–1096

  • [41] Ayata C., Spreading depression and neurovascular coupling, Stroke, 2013, 44(Suppl. 1), S87–89 http://dx.doi.org/10.1161/STROKEAHA.112.680264 [CrossRef]

  • [42] Chang J.C., Brennan K., He D., Huang H., Miura R.M., Wilson P.L., et al., A mathematical model of the metabolic and perfusion effects on cortical spreading depression, arXiv, 2012, 1207.3563

  • [43] Hodgkin A.L., Huxley A.F., A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol., 1952, 117, 500–544

  • [44] Dreier J.P., Isele T.M., Reiurth C., Kirov S.A., Dahlem M.A., Herreras O., Is spreading depolarization characterized by an abrupt, massive release of Gibbs free energy from the human brain cortex?, Neuroscientist, 2013, 19, 25–42 http://dx.doi.org/10.1177/1073858412453340 [CrossRef]

  • [45] Kager H., Wadman W.J., Somjen G.G., Simulated seizures and spreading depression in a neuron model incorporating interstitial space and ion concentrations, J. Neurophysiol., 2000, 84, 495–512

  • [46] Shapiro B.E., Osmotic forces and gap junctions in spreading depression: a computational model, J. Comput. Neurosci., 2001, 10, 99–120 http://dx.doi.org/10.1023/A:1008924227961 [CrossRef]

  • [47] Somjen G.G., Kager H., Wadman W.J., Computer simulations of neuron-glia interactions mediated by ion flux, J. Comput. Neurosci., 2008, 25, 349–365 http://dx.doi.org/10.1007/s10827-008-0083-9 [CrossRef]

  • [48] Yao W., Huang H., Miura R.M., A continuum neuronal model for the instigation and propagation of cortical spreading depression, Bull. Math. Biol., 2011, 73, 2773–2790 http://dx.doi.org/10.1007/s11538-011-9647-3 [CrossRef]

  • [49] Bressloff P.C., Spatiotemporal dynamics of continuum neural fields, J. Phys. A, 2012, 45, 033001 http://dx.doi.org/10.1088/1751-8113/45/3/033001 [CrossRef]

  • [50] Ullah G., Cressman J.R.Jr., Barreto E., Schiff S.J., The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. network and glial dynamics, J. Comput. Neurosci., 2009, 26, 171–183 http://dx.doi.org/10.1007/s10827-008-0130-6 [CrossRef]

  • [51] Dahlem M.A., Hadjikhani N., Migraine aura: retracting particle-like waves in weakly susceptible cortex, PLoS One, 2009, 4, e5007 http://dx.doi.org/10.1371/journal.pone.0005007 [CrossRef]

  • [52] Dahlem M.A., Isele T.M., Transient localized wave patterns and their application to migraine, J. Math. Neurosci, 2013, 3, 7 http://dx.doi.org/10.1186/2190-8567-3-7 [CrossRef]

  • [53] Akhmediev N., Ankiewicz A., Dissipative solitons: from optics to biology and medicine, Lect. Notes Phys., 2008, 751, 1–28 http://dx.doi.org/10.1007/978-3-540-78217-9_1 [CrossRef]

  • [54] Kerner B.S., Osipov V.V., Autosolitons: a new approach to problems of self-organization and turbulence, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1994

  • [55] Strong A.J., Anderson P.J., Watts H.R., Virley D.J., Lloyd A., Irving E.A., et al., Peri-infarct depolarizations lead to loss of perfusion in ischaemic gyrencephalic cerebral cortex, Brain, 2007, 130, 995–1008 http://dx.doi.org/10.1093/brain/awl392 [CrossRef]

  • [56] Dahlem M.A., Müller S.C., Image processing techniques to analyse traveling waves, Forma, 1999, 13, 375–386

  • [57] Dahlem M.A., Graf R., Strong A.J., Dreier J.P., Dahlem Y.A., Sieber M., et al., Two-dimensional wave patterns of spreading depolarization: retracting, re-entrant, and stationary waves, Physica D, 2010, 239, 889–903 http://dx.doi.org/10.1016/j.physd.2009.08.009 [CrossRef]

  • [58] Dreier J.P., The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease, Nat. Med., 2011, 17, 439–447 http://dx.doi.org/10.1038/nm.2333 [CrossRef]

  • [59] Grafstein B., Neural release of potassium during spreading depression, In: Brazier M.A. (ed.) Brain function. Cortical excitability and steady potentials, University of California Press, Berkeley, 1963, 87–124

  • [60] Goadsby P.J., Lipton R.B., Ferrari M.D., Migraine — current understanding and treatment, N. Engl. J. Med., 2002, 346, 257–270 http://dx.doi.org/10.1056/NEJMra010917 [CrossRef]

  • [61] Schoenen J., Vandersmissen B., Jeangette S., Herroelen L., Vandenheede M., Gérard P., et al., Migraine prevention with a supraorbital transcutaneous stimulator: a randomized controlled trial, Neurology, 2013, 80, 697–704 http://dx.doi.org/10.1212/WNL.0b013e3182825055 [CrossRef]

  • [62] Lipton R.B., Dodick D.W., Silberstein S.D., Saper J.R., Aurora S.K., Pearlman S.H., et al., Single-pulse transcranial magnetic stimulation for acute treatment of migraine with aura: a randomised, doubleblind, parallel-group, sham-controlled trial, Lancet Neurol., 2010, 9, 373–380 http://dx.doi.org/10.1016/S1474-4422(10)70054-5 [CrossRef]

  • [63] Ayata C., Cortical spreading depression triggers migraine attack: pro, Headache, 2010, 50, 725–730 http://dx.doi.org/10.1111/j.1526-4610.2010.01647.x [CrossRef]

  • [64] DaSilva A.F., Mendonca M.E., Zaghi S., Lopes M., DosSantos M.F., Spierings E.L., et al., tDCS-induced analgesia and electrical fields in pain-related neural networks in chronic migraine, Headache, 2012, 52, 1283–1295 http://dx.doi.org/10.1111/j.1526-4610.2012.02141.x [CrossRef]

  • [65] Antal A., Kriener N., Lang N., Boros K., Paulus W, Cathodal transcranial direct current stimulation of the visual cortex in the prophylactic treatment of migraine, Cephalalgia, 2011, 31, 820–828 http://dx.doi.org/10.1177/0333102411399349 [CrossRef]

  • [66] Burstein R., Jakubowski M., Unitary hypothesis for multiple triggers of the pain and strain of migraine, J. Comp. Neurol., 2005, 493, 9–14 http://dx.doi.org/10.1002/cne.20688 [CrossRef]

  • [67] Goadsby P.J., Silberstein S.D., Migraine triggers: harnessing the messages of clinical practice, Neurology, 2013, 80, 424–425 http://dx.doi.org/10.1212/WNL.0b013e31827f100c [CrossRef]

  • [68] Hougaard A., Amin F.M., Hauge A.W., Ashina M., Olesen J., Provocation of migraine with aura using natural trigger factors, Neurology, 2013, 80, 428–431 http://dx.doi.org/10.1212/WNL.0b013e31827f0f10 [CrossRef]

  • [69] Paemeleire K., Goodman A.M., Results of a patient survey for an implantable neurostimulator to treat migraine headaches, J. Headache Pain, 2012, 13, 239–241 http://dx.doi.org/10.1007/s10194-012-0430-0 [CrossRef]

  • [70] Tepper S.J., Rezai A., Narouze S., Steiner C., Mohajer P., Ansarinia M., Acute treatment of intractable migraine with sphenopalatine ganglion electrical stimulation, Headache, 2009, 49, 983–989 http://dx.doi.org/10.1111/j.1526-4610.2009.01451.x [CrossRef]

  • [71] Schoenen J., Jensen R.H., Lantéri-Minet M., Láinez M.J., Gaul C., Goodman A.M., et al., Stimulation of the sphenopalatine ganglion (SPG) for cluster headache treatment. Pathway CH-1: a randomized, sham-controlled study, Cephalalgia, 2013, 33, 816–830 http://dx.doi.org/10.1177/0333102412473667 [CrossRef]

  • [72] Son Y.D., Cho Z.H., Kim H.K., Choi E.J., Lee S.Y., Chi J.G., et al., Glucose metabolism of the midline nuclei raphe in the brainstem observed by PET-MRI fusion imaging, Neuroimage, 2012, 59, 1094–1097 http://dx.doi.org/10.1016/j.neuroimage.2011.09.036 [CrossRef]

  • [73] Cressman J.R.Jr., Ullah G., Ziburkus J., Schiff S.J., Barreto E., The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. single neuron dynamics, J. Comput. Neurosci., 2009, 26, 159–170 http://dx.doi.org/10.1007/s10827-008-0132-4 [CrossRef]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Markus A. Dahlem, Bernd Schmidt, Ingo Bojak, Sebastian Boie, Frederike Kneer, Nouchine Hadjikhani, and Jürgen Kurths
Frontiers in Computational Neuroscience, 2015, Volume 9
[2]
Yang Tang, Feng Qian, Huijun Gao, and Jürgen Kurths
Annual Reviews in Control, 2014, Volume 38, Number 2, Page 184

Comments (0)

Please log in or register to comment.