Skip to content
Publicly Available Published by De Gruyter January 1, 2009

How to predict changes in solvolysis mechanisms

  • Herbert Mayr and Armin R. Ofial

Abstract

Stopped-flow and laser flash techniques have been employed to investigate the individual steps of the solvolysis reactions of benzhydryl (diarylmethyl) halides and carboxylates. In this way, absolute rate constants for the ionization (k1), recombination of the carbocation with the leaving group (k-1), and subsequent reaction with the solvent (kSolvOH) have been determined. As the stabilization of the carbocations increases, the mechanism changes from (a) SN1 reactions with irreversible ionization through (b) SN1 reactions with common-ion return and (c) SN2C+ reactions, where the intermediate carbocations accumulate, to (d) the formation of persistent carbocations which do not undergo subsequent reactions under the selected solvolysis conditions. The correlation equation log k = s(N + E), where the carbocations are characterized by the electrophilicity parameter E, and leaving groups and solvents are characterized by the nucleophile-specific parameters s and N can be employed to predict the changes of mechanism.


Conference

International Conference on Physical Organic Chemistry (ICPOC-19), International Conference on Physical Organic Chemistry, ICPOC, Physical Organic Chemistry, 19th, Santiago de Compostela, Spain, 2008-07-13–2008-07-18


References

1. (a) C. K. Ingold. Structure and Mechanism in Organic Chemistry, 2nd ed., p. 430, Cornell University Press, Ithaca (1969);Search in Google Scholar

1. (b) doi:10.1039/cs9811000345, W. P. Jencks. Chem. Soc. Rev. 10, 345 (1981).Search in Google Scholar

2. doi:10.1021/ar00166a001, Alternative designation ANDN and DN + AN, respectively: R. D. Guthrie, W. P. Jencks. Acc. Chem. Res. 22, 343 (1989).Search in Google Scholar

3. (a) doi:10.1021/ja01583a022, S. Winstein, E. Clippinger, A. H. Fainberg, R. Heck, G. C. Robinson. J. Am. Chem. Soc. 78, 328 (1956);Search in Google Scholar

3. (b) doi:10.1021/ja01534a045, S. Winstein, G. C. Robinson. J. Am. Chem. Soc. 80, 169 (1958).Search in Google Scholar

4. doi:10.1021/ja00357a020, R. Ta-Shma, Z. Rappoport. J. Am. Chem. Soc. 105, 6082 (1983).Search in Google Scholar

5. D. J. Raber, J. M. Harris, P. v. R. Schleyer. In Ions and Ion Pairs in Organic Reactions, Vol. 2, M. Szwarc (Ed.), pp. 247-374, John Wiley, New York (1974).Search in Google Scholar

6. (a) doi:10.1021/ja01638a093, S. Winstein, E. Clippinger, A. H. Fainberg, G. C. Robinson. J. Am. Chem. Soc. 76, 2597 (1954);Search in Google Scholar

6. (b) doi:10.1021/ja01465a035, S. Winstein, P. E. Klinedinst Jr., G. C. Robinson. J. Am. Chem. Soc. 83, 885 (1961);Search in Google Scholar

6. (c) S. Winstein, B. Appel, R. Baker, A. Diaz. Chem. Soc. (London), Spec. Publ. Organic Reaction Mechanisms 19, 109 (1965).Search in Google Scholar

7. doi:10.1016/S0065-3160(04)39001-5, J. P. Richard, T. L. Amyes, M. M. Toteva, Y. Tsuji. Adv. Phys. Org. Chem. 39, 1 (2004).Search in Google Scholar

8. (a) doi:10.1002/ange.19941060905, H. Mayr, M. Patz. Angew. Chem. 106, 990 (1994);Search in Google Scholar

8. (b) doi:10.1002/anie.199409381, H. Mayr, M. Patz. Angew. Chem., Int. Ed. Engl. 33, 938 (1994).Search in Google Scholar

9. (a) doi:10.1021/ja010890y, H. Mayr, T. Bug, M. F. Gotta, N. Hering, B. Irrgang, B. Janker, B. Kempf, R. Loos, A. R. Ofial, G. Remennikov, H. Schimmel. J. Am. Chem. Soc. 123, 9500 (2001);Search in Google Scholar

9. (b) doi:10.1021/ar020094c, H. Mayr, B. Kempf, A. R. Ofial. Acc. Chem. Res. 36, 66 (2003);Search in Google Scholar

9. (c) H. Mayr, A. R. Ofial. In Carbocation Chemistry, G. A. Olah, G. K. S. Prakash (Eds.), Chap. 13, pp. 331-358, John Wiley, Hoboken (2004);Search in Google Scholar

9. (d) doi:10.1002/masy.200451127, A. R. Ofial, H. Mayr. Macromol. Symp. 215, 353 (2004);Search in Google Scholar

9. (e) doi:10.1351/pac200577111807, H. Mayr, A. R. Ofial. Pure Appl. Chem. 77, 1807 (2005);Search in Google Scholar

9. (f) doi:10.1002/poc.1325, H. Mayr, A. R. Ofial. J. Phys. Org. Chem. 21, 584 (2008).Search in Google Scholar

10. doi:10.1021/ja031828z, S. Minegishi, S. Kobayashi, H. Mayr. J. Am. Chem. Soc. 126, 5174 (2004).Search in Google Scholar

11. doi:10.1021/cr00017a007, P. K. Das. Chem. Rev. 93, 119 (1993).Search in Google Scholar

12. doi:10.1139/cjc-79-12-1887, T. V. Pham, R. A. McClelland. Can. J. Chem. 79, 1887 (2001).Search in Google Scholar

13. (a) doi:10.1021/ja00228a066, R. A. McClelland, V. M. Kanagasabapathy, S. Steenken. J. Am. Chem. Soc. 110, 6913 (1988);Search in Google Scholar

13. (b) R. A. McClelland. Reactive Intermediates, R. A. Moss, M. S. Platz, M. Jones Jr. (Eds.), Chap. 1, pp. 3-40, John Wiley, Hoboken (2004).Search in Google Scholar

14. (a) doi:10.1002/ange.200353468, B. Denegri, S. Minegishi, O. Kronja, H. Mayr. Angew. Chem. 116, 2353 (2004);Search in Google Scholar

14. (b) doi:10.1002/anie.200353468, B. Denegri, S. Minegishi, O. Kronja, H. Mayr. Angew. Chem., Int. Ed. 43, 2302 (2004);Search in Google Scholar

14. (c) doi:10.1139/v05-170, T. B. Phan, H. Mayr. Can. J. Chem. 83, 1554 (2005).Search in Google Scholar

15. D. N. Kevill. In Advances in Quantitative Structure-Property Relationships, Vol. 1, M. Charton (Ed.), pp. 81-115, JAI Press, Greenwich (1996).10.1016/S1874-527X(96)80006-5Search in Google Scholar

16. doi:10.1021/ja0765464, H. F. Schaller, A. A. Tishkov, X. Feng, H. Mayr. J. Am. Chem. Soc. 130, 3012 (2008).Search in Google Scholar

17. doi:10.1021/ja045562n, S. Minegishi, R. Loos, S. Kobayashi, H. Mayr. J. Am. Chem. Soc. 127, 2641 (2005).Search in Google Scholar

18. doi:10.1002/9780470171967.ch5, T. W. Bentley. Prog. Phys. Org. Chem. 17, 121 (1990).Search in Google Scholar

19. (a) ref. [5]; (b) P. J. Stang, Z. Rappoport, M. Hanack, L. R. Subramanian. Vinyl Cations, Chap. 6, pp. 337-338, Academic Press, New York (1979); (c) Z. Rappoport. In Reactive Intermediates, Vol. 3, R. A. Abramovitch (Ed.), pp. 583-594, Plenum Press: New York (1983); (d) T. Kitamura, H. Taniguchi, Y. Tsuno. In Dicoordinated Carbocations, Z. Rappoport, P. J. Stang (Eds.), pp. 321-376, John Wiley, Chichester (1997).Search in Google Scholar

20. (a) T. H. Bailey, J. R. Fox, E. Jackson, G. Kohnstam, A. Queen. J. Chem. Soc., Chem. Commun. 122 (1966);10.1039/c19660000122Search in Google Scholar

20. (b) doi:10.1039/jr9400000979, L. C. Bateman, M. G. Church, E. D. Hughes, C. K. Ingold, N. A. Taher. J. Chem. Soc. 979 (1940);Search in Google Scholar

20. (c) C. K. Ingold. Structure and Mechanism in Organic Chemistry, 2nd ed., p. 492, Cornell University Press, Ithaca (1969).Search in Google Scholar

21. (a) doi:10.1002/chem.200500845, B. Denegri, A. Streiter, S. Juric, A. R. Ofial, O. Kronja, H. Mayr. Chem.Eur. J. 12, 1648 (2006);Search in Google Scholar

21. (b) doi:10.1002/chem.200690066, B. Denegri, A. Streiter, S. Juric, A. R. Ofial, O. Kronja, H. Mayr. Chem.Eur. J. 12, 5415 (2006).Search in Google Scholar

22. doi:10.1002/chem.200500847, B. Denegri, A. R. Ofial, S. Juric, A. Streiter, O. Kronja, H. Mayr. Chem.Eur. J. 12, 1657 (2006).Search in Google Scholar

23. doi:10.1002/chem.200600517, T. W. Bentley. Chem.Eur. J. 12, 6514 (2006).Search in Google Scholar

24. (a) doi:10.1021/jo701379n, B. Denegri, O. Kronja. J. Org. Chem. 72, 8427 (2007);Search in Google Scholar

24. (b) doi:10.1002/poc.1290, S. Juric, O. Kronja. J. Phys. Org. Chem. 21, 108 (2008).Search in Google Scholar

25. (a) doi:10.1002/1521-3757(20021202)114:23<4674::AID-ANGE4674>3.0.CO;2-Y, H. Mayr, S. Minegishi. Angew. Chem. 114, 4674 (2002);Search in Google Scholar

25. (b) doi:10.1002/1521-3773(20021202)41:23<4493::AID-ANIE4493>3.0.CO;2-U, H. Mayr, S. Minegishi. Angew. Chem., Int. Ed. 41, 4493 (2002).Search in Google Scholar

26. (a) doi:10.1002/ange.200800354, H. F. Schaller, H. Mayr. Angew. Chem. 120, 4022 (2008);Search in Google Scholar

26. (b) doi:10.1002/anie.200800354, H. F. Schaller, H. Mayr. Angew. Chem., Int. Ed. 47, 3958 (2008).Search in Google Scholar

27. doi:10.1021/ja01607a027, G. S. Hammond. J. Am. Chem. Soc. 77, 334 (1955).Search in Google Scholar

28. (a) doi:10.1021/j100849a019, R. A. Marcus. J. Phys. Chem. 72, 891 (1968);Search in Google Scholar

28. (b) doi:10.1146/annurev.pc.31.100180.001303, W. J. Albery. Annu. Rev. Phys. Chem. 31, 227 (1980).Search in Google Scholar

29. (a) doi:10.1021/ja01182a117, E. Grunwald, S. Winstein. J. Am. Chem. Soc. 70, 846 (1948);Search in Google Scholar

29. (b) doi:10.1021/ja01593a033, A. H. Fainberg, S. Winstein. J. Am. Chem. Soc. 78, 2770 (1956).Search in Google Scholar

30. doi:10.1021/jo00224a034, T. W. Bentley, K. Roberts. J. Org. Chem. 50, 4821 (1985).Search in Google Scholar

31. E. M. Arnett, C. Petro, P. v. R. Schleyer. J. Am. Chem. Soc. 101, 522 (1979).Search in Google Scholar

32. (a) doi:10.1021/ja00381a037, J. P. Richard, W. P. Jencks. J. Am. Chem. Soc. 104, 4689 (1982);Search in Google Scholar

32. (b) doi:10.1021/ja00381a038, J. P. Richard, W. P. Jencks. J. Am. Chem. Soc. 104, 4691 (1982).Search in Google Scholar

Published Online: 2009-01-01
Published in Print: 2009-01-01

© 2013 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1351/PAC-CON-08-08-26/html
Scroll to top button