Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter October 7, 2015

Status of long-wave Auger suppressed HgCdTe detectors operating > 200 K

  • P. Martyniuk EMAIL logo , W. Gawron , D. Stępień , J. Pawluczyk , A. Kębłowski , P. Madejczyk , M. Kopytko and A. Koźniewski
From the journal Opto-Electronics Review

Abstract

We report on the status of long-wave infrared Auger suppressed HgCdTe multilayer structures grown on GaAs substrates designed for high operating temperature condition: 200-300 K exhibiting, detectivity -1011 cmHz1/2/W, time response within a –120 ps range at 230 K. Abnormal responsivity within the range of -30 A/W for electrical area 30×30 μm2 under reverse bias V = 150 mV is reported. Maximum extraction coefficient of -2.3 was estimated for analysed structures.

References

1. J. Piotrowski and A. Rogalski, High-Operating Temperature Infrared Photodetectors, SPIE Press, Bellingham, 2007.10.1117/3.717228Search in Google Scholar

2. A. Rogalski, Infrared Detectors, 2nd edition, CRC Press, Boca Raton, 2011.Search in Google Scholar

3. J. Piotrowski and A. Piotrowski, “Room temperature IR pho- todetectors” in Mercury Cadmium Telluride. Growth, Properties and Applications, edited by P. Capper and J. Garland, pp. 513-537, Wiley, West Sussex, 2011.10.1002/9780470669464.ch22Search in Google Scholar

4. J. Piotrowski and A. Rogalski, “Uncooled long wavelength infrared photon detectors”, Infrared Phys. Technol. 46, 115-131 (2004).Search in Google Scholar

5. A. Rogalski, “HgCdTe infrared detector material: history, status and outlook”, Rep. Prog. Phys. 68, 2267-2336 (2005).10.1088/0034-4885/68/10/R01Search in Google Scholar

6. J. Piotrowski and W. Gawron, “Ultimate performance of in- frared photodetectors and figure of merit of detector material”, Infrared Phys. Technol. 38, 63-68 (1997).Search in Google Scholar

7. T. Ashley and C.T. Elliott, “Nonequlibrium devices for in-frared detection”, Electron. Lett. 21, 451-452 (1985).Search in Google Scholar

8. C.T. Elliott, “Non-equilibrium mode of operation of narrow gap semiconductor devices”, Semicond. Sci. Technol. 5, S30-S37 (1990).10.1088/0268-1242/5/3S/008Search in Google Scholar

9. T. Elliott, “New infrared and other applications of narrow gap semiconductors”, Proc. SPIE 3436, 763-775 (1998).Search in Google Scholar

10. C.T. Elliott, “Photoconductive and non-equilibrium devices in HgCdTe and related alloys” in Infrared Detectors and Emitters: Materials and Devices, pp. 279-312, edited by P. Capper and C.T. Elliott, Kluwer Academic Publishers, Boston, 2001.10.1007/978-1-4615-1607-1_11Search in Google Scholar

11. P. Norton, “HgCdTe infrared detectors”, Opto-Electron. Rev 10, 159-174 (2002).Search in Google Scholar

12. P.Y. Emelie, J.D. Philips, S. Velicu, and C.H. Grein, “Mod- elling and design consideration of HgCdTe infrared photodiodes under nonequilibrium operation”, J. Electron. Ma- ter. 36, 846-851 (2007).Search in Google Scholar

13. P.Y. Emelie, S. Velicu, C.H. Grein, J.D. Philips, P.S. Wije- warnasuriya, and N.K. Dhar, “Modelling of LWIR HgCdTe Auger-suppressed infrared photodiodes under nonequili- brium operation”, J. Electron. Mater. 37, 1362-1368 (2008).Search in Google Scholar

14. S. Velicu, C.H. Grein, P.Y. Emelie, A. Itsuno, J.D. Philips, and P. Wijewarnasuriya, “MWIR and LWIR HgCdTe infra- red detectors operated with reduced cooling requirements”, J. Electron. Mater. 39, 873-881 (2010).Search in Google Scholar

15. A.M. Itsuno, J.D. Philips, and S. Velicu, “Predicted perfor- mance improvement of Auger-suppressed HgCdTe photodiodes and p-n heterojunction detectors”, IEEE Trans. Electron Dev. 58, 501-507 (2011).Search in Google Scholar

16. H. Kocer, “Numerical investigation of Auger contributed performance loss in long wavelength infrared HgCdTe photodiodes”, Solid-State Electron. 87, 58-63 (2013).10.1016/j.sse.2013.05.002Search in Google Scholar

17. S. Maimon and G. Wicks, “nBn detector, an infrared detector with reduced dark current and higher operating tempera- ture”, Appl. Phys. Lett. 89, 151109-1-3 (2006).10.1063/1.2360235Search in Google Scholar

18. A. Piotrowski, P. Madejczyk, W. Gawron, K. Kłos, J. Pawluczyk, J. Rutkowski, J. Piotrowski, and A. Rogalski, “Prog- ress in MOCVD growth of HgCdTe heterostructures for uncooled infrared photodetectors”, Infrared Phys. Technol. 49, 173-182 (2007).Search in Google Scholar

19. P. Madejczyk, W. Gawron, P. Martyniuk, A. Kębłowski, A. Piotrowski, W. Pusz, A. Kowalewski, J. Piotrowski, and A. Rogalski, “MOCVD grown HgCdTe device structure for ambient temperature LWIR detectors”, Semicond. Sci. Technol. 28, 105017 (2013).Search in Google Scholar

20. J. Piotrowski, W. Gawron, Z. Orman, J. Pawluczyk, K. Kłos, D. Stępień, and A. Piotrowski, “Dark currents, responsivity and response time in graded gap HgCdTe structures”, Proc. SPIE 7660, 766031 (2010).10.1117/12.850331Search in Google Scholar

21. A. Piotrowski, J. Piotrowski, W. Gawron, J. Pawluczyk and M. Pedzinska, “Extension of spectral range of Peltier cooled photodetectors to 16 μm”, Proc. SPIE 7298, 729824 (2009).10.1117/12.829933Search in Google Scholar

22. D. Stanaszek, J. Piotrowski, A. Piotrowski, W. Gawron, Z. Orman, R. Paliwoda, M. Brudnowski, J. Pawluczyk and M. Pedzińska, “Mid and long infrared detection modules for pi- cosecond range measurements”, Proc. SPIE 7482, 74820M (2009).10.1117/12.835963Search in Google Scholar

23. A. Piotrowski, J. Piotrowski, W. Gawron, J. Pawluczyk, M. Pedzinska, “Extension of usable spectral range of Peltier cooled photodetectors”, Acta Physica Polonica A 116, 52-55 (2009).Search in Google Scholar

24. APSYS Macro/User’s Manual ver. 2011. Crosslight Soft- ware Inc. (2011).Search in Google Scholar

25. P.P. Capper, Properties of Narrow Gap Cadmium-Based Compounds, London, U.K.: Inst. Elect. Eng, 1994.Search in Google Scholar

26. R.K. Bhan and V. Dhar, “Carrier density approximation for non-parabolic and highly degenerate HgCdTe semiconduc- tors”, Semicond. Sci. Technol. 19, 413-416 (2003).Search in Google Scholar

27. J. Wang, X. Chen, W. Hu, L. Wang, Y. Chen, W. Lu, and F. Xu, “Different approximation for carrier statistic in non-parabolic MWIR HgCdTe photovoltaic devices”, Proc. SPIE 8012, 80123B (2011).10.1117/12.886656Search in Google Scholar

28. J. Wenus, J. Rutkowski, and A. Rogalski, “Two-dimensional analysis of double-layer heterojunction HgCdTe photodiodes,” IEEE T. Electron Devices 48, 7 (2001).10.1109/16.930647Search in Google Scholar

29. T.N. Casselman and P.E. Petersen, “A comparison of the dominant Auger transitions in p-type (HgCd)Te”, Solid State Commun. 33, 615-619 (1980).Search in Google Scholar

30. G.A. Hurkx, D.B.M. Klaassen, and M.P.G. Knuvers, “A new recombination model for device simulation including tunnel- ling”, IEEE T. Electron Devices 39, 2 (1992).10.1109/16.121690Search in Google Scholar

31. G.L. Hansen, J.L. Schmidt, and T.N. Casselman, “Energy gap vs. alloy composition and temperature in Hg1-xCdxTe”, J. Appl.Phys. 53, 7099 (1982).Search in Google Scholar

32. W. Scott, “Electron Mobility in Hg1-xCdxTe”, J. Appl. Phys. 43, 1055 (1972).Search in Google Scholar

33. W.W. Anderson, “Absorption constant of Pb1-xSnxTe and Hg1-xCdxTe alloys”, Infrared Phys. Technol. 20, 363 (1980).Search in Google Scholar

34. E. Finkman and S. E.Schacham, “The exponential optical ab- sorption band tail of Hg1-xCdxTe”, J. Appl. Phys. 56, 10 (1984).10.1063/1.333828Search in Google Scholar

35. Q. Li and R.W. Dutton, “Numerical small-signal AC model- ling of deep-level-trap related frequency-dependent output conductance and capacitance for GaAs MESFET’s on semi-insulating substrates”, IEEE T. Electron Devices 38, 1285-1288 (1991).10.1109/16.81618Search in Google Scholar

36. P.S. Wijewarnasuriya, “Non-equilibrium operation of long wavelength HgCdTe photovoltaic detectors for higher operating temperature applications”, ARL-TR-6532 (2013). 10.21236/ADA584090Search in Google Scholar

Published Online: 2015-10-7
Published in Print: 2015-12-1

© 2015

This article is distributed under the terms of the Creative Commons Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/oere-2015-0036/html
Scroll to top button