Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access March 17, 2015

Identification of biological markers for better characterization of older subjects with physical frailty and sarcopenia

  • Bertrand Fougère , Bruno Vellas , Gabor Abellan van Kan and Matteo Cesari
This article has been retracted. Retraction note.

Abstract

Population aging is rapidly accelerating worldwide; however, longer life expectancy is not the only public health goal. Indeed, extended lifetime involves maintaining function and the capacity of living independently. Sarcopenia and physical frailty are both highly relevant entities with regards to functionality and autonomy of older adults. The concepts and definitions of frailty and sarcopenia have largely been revised over the years. Sarcopenia is an age-related progressive and generalized loss of skeletal muscle mass and strength. On the other hand, frailty is a state of increased vulnerability to stressors, responsible for exposing the older person to enhanced risk of adverse outcomes. Physical frailty and sarcopenia substantially overlap and several adverse outcomes of frailty are likely mediated by sarcopenia. Indeed, the concepts of sarcopenia and physical frailty can be perceived as related to the same target organ (i.e., skeletal muscle) and it may be possible to combine them into a unique definition. The biological background of such a close relationship needs to be explored and clarified as it can potentially provide novel and pivotal insights for the assessment and treatment of these conditions in old age. The aim of this paper is to indicate and discuss possible biological markers to be considered in the framing of physical frailty and sarcopenia.

References

[1]Cesari M., Landi F., Vellas B., Bernabei R., Marzetti E., Sarcopenia and physical frailty: two sides of the same coin, Front. Aging Neurosci., 2014, 6, 192 10.3389/fnagi.2014.00192Search in Google Scholar PubMed PubMed Central

[2]Wolfe R.R., The underappreciated role of muscle in health and disease, Am. J. Clin. Nutr., 2006, 84, 475-482 10.1093/ajcn/84.3.475Search in Google Scholar PubMed

[3]Tzankoff S.P., Norris A.H., Longitudinal changes in basal metabolism in man, J. Appl. Physiol., 1978, 45, 536-539 10.1152/jappl.1978.45.4.536Search in Google Scholar PubMed

[4]Butler R.N., Did you say “sarcopenia”?, Geriatrics, 1993, 48, 11-12 Search in Google Scholar

[5]Cruz-Jentoft A.J., Baeyens J.P., Bauer J.M., Boirie Y., Cederholm T., Landi F., et al., Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People, Age Ageing, 2010, 39, 412-423 10.1093/ageing/afq034Search in Google Scholar PubMed PubMed Central

[6]Evans W.J., What is sarcopenia?, J. Gerontol. A Biol. Sci. Med Sci., 1995, 50 (SI), 5-8 Search in Google Scholar

[7]Evans W.J., Campbell W.W., Sarcopenia and age-related changes in body composition and functional capacity, J. Nutr., 1993, 123 (Suppl. 2), 465-468 10.1093/jn/123.suppl_2.465Search in Google Scholar PubMed

[8]Rosenberg I.H., Sarcopenia: origins and clinical relevance, J. Nutr., 1997, 127 (Suppl. 5), 990S- 991S 10.1093/jn/127.5.990SSearch in Google Scholar PubMed

[9]Fielding R.A., Vellas B., Evans W.J., Bhasin S., Morley J.E., Newman A.B., et al., Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia, J. Am. Med. Dir. Assoc., 2011, 12, 249-256 Search in Google Scholar

[10]Frontera W.R., Hughes V.A., Fielding R.A., Fiatarone M.A., Evans W.J., Roubenoff R., Aging of skeletal muscle: a 12-yr longitudinal study, J. Appl. Physiol., 2000, 88, 1321-1326 10.1152/jappl.2000.88.4.1321Search in Google Scholar PubMed

[11]Lexell J., Human aging, muscle mass, and fiber type composition, J. Gerontol. A Biol. Sci. Med. Sci., 1995, 50 (SI), 11-16 10.1093/gerona/50A.Special_Issue.11Search in Google Scholar PubMed

[12]Janssen I., Heymsfield S.B., Ross R., Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability, J. Am. Geriatr. Soc., 2002, 50, 889-896 10.1046/j.1532-5415.2002.50216.xSearch in Google Scholar PubMed

[13]Abellan van Kan G., Cameron Chumlea W., Gillette-Guyonet S., Houles M., Dupuy C., Rolland Y., et al., Clinical trials on sarcopenia: methodological issues regarding phase 3 trials, Clin. Geriatr. Med., 2011, 27, 471-482 10.1016/j.cger.2011.03.010Search in Google Scholar PubMed PubMed Central

[14]Fried L.P., Tangen C.M., Walston J., Newman A.B., Hirsch C., Gottdiener J., et al., Frailty in older adults: evidence for a phenotype, J. Gerontol. A Biol. Sci. Med. Sci., 2001, 56, M146-156 10.1093/gerona/56.3.M146Search in Google Scholar

[15]Mitnitski A.B., Mogilner A.J., MacKnight C., Rockwood K., The mortality rate as a function of accumulated deficits in a frailty index, Mech. Ageing Dev., 2002, 123, 1457-1460 10.1016/S0047-6374(02)00082-9Search in Google Scholar

[16]Rockwood K., Andrew M., Mitnitski A., A comparison of two approaches to measuring frailty in elderly people, J. Gerontol. A Biol. Sci. Med. Sci., 2007, 62, 738-743 10.1093/gerona/62.7.738Search in Google Scholar PubMed

[17]Woo J., Leung J., Morley J.E., Comparison of frailty indicators based on clinical phenotype and the multiple deficit approach in predicting mortality and physical limitation, J. Am. Geriatr. Soc., 2012, 60, 1478-1486 10.1111/j.1532-5415.2012.04074.xSearch in Google Scholar PubMed

[18]Abellan van Kan G., Rolland Y., Andrieu S., Bauer J., Beauchet O., Bonnefoy M., et al., Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force, J. Nutr. Health Aging, 2009, 13, 881-889 10.1007/s12603-009-0246-zSearch in Google Scholar PubMed

[19]Daniels R., van Rossum E., de Witte L., Kempen G.I.J.M., van den Heuvel W., Interventions to prevent disability in frail community-dwelling elderly: a systematic review, BMC Health Serv. Res., 2008, 8, 278 10.1186/1472-6963-8-278Search in Google Scholar PubMed PubMed Central

[20]Ferrucci L., Guralnik J.M., Studenski S., Fried L.P., Cutler G.B., Walston J.D., et al., Designing randomized, controlled trials aimed at preventing or delaying functional decline and disability in frail, older persons: a consensus report, J. Am. Geriatr. Soc., 2004, 52, 625-634 10.1111/j.1532-5415.2004.52174.xSearch in Google Scholar PubMed

[21]Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework, Clin. Pharmacol. Ther., 2001, 69, 89-95 10.1067/mcp.2001.113989Search in Google Scholar PubMed

[22]Krabbe K.S., Pedersen M., Bruunsgaard H., Inflammatory mediators in the elderly, Exp. Gerontol., 2004, 39, 687-699 10.1016/j.exger.2004.01.009Search in Google Scholar PubMed

[23]Morley J.E., Baumgartner R.N., Cytokine-related aging process, J. Gerontol. A Biol. Sci. Med. Sci., 2004, 59, M924-929 10.1093/gerona/59.9.M924Search in Google Scholar

[24]Ferrucci L., Corsi A., Lauretani F., Bandinelli S., Bartali B., Taub D.D., et al., The origins of age-related proinflammatory state, Blood, 2005, 105, 2294-2299 10.1182/blood-2004-07-2599Search in Google Scholar PubMed

[25]Franceschi C., Campisi J., Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases, J. Gerontol. A Biol. Sci. Med. Sci., 2014, 69 (Suppl. 1), S4-9 10.1093/gerona/glu057Search in Google Scholar PubMed

[26]Schaap L.A., Pluijm S.M.F., Deeg D.J.H., Visser M., Inflammatory markers and loss of muscle mass (sarcopenia) and strength, Am. J. Med., 2006, 119, 526.e9-17 10.1016/j.amjmed.2005.10.049Search in Google Scholar PubMed

[27]Schaap L.A., Pluijm S.M.F., Deeg D.J.H., Harris T.B., Kritchevsky S.B., Newman A.B., et al., Higher inflammatory marker levels in older persons: associations with 5-year change in muscle mass and muscle strength, J. Gerontol. A Biol. Sci. Med. Sci., 2009, 64, 1183-1189 10.1093/gerona/glp097Search in Google Scholar PubMed PubMed Central

[28]Visser M., Pahor M., Taaffe D.R., Goodpaster B.H., Simonsick E.M., Newman A.B., et al. Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the Health ABC Study, J. Gerontol. A Biol. Sci. Med. Sci., 2002, 57, M326-332 10.1093/gerona/57.5.M326Search in Google Scholar PubMed

[29]Ferrucci L., Penninx B.W.J.H., Volpato S., Harris T.B., Bandeen-Roche K., Balfour J., et al., Change in muscle strength explains accelerated decline of physical function in older women with high interleukin-6 serum levels, J. Am. Geriatr. Soc., 2002, 50, 1947-1954 10.1046/j.1532-5415.2002.50605.xSearch in Google Scholar PubMed

[30]Penninx B.W.J.H., Kritchevsky S.B., Newman A.B., Nicklas B.J., Simonsick E.M., Rubin S., et al., Inflammatory markers and incident mobility limitation in the elderly, J. Am. Geriatr. Soc., 2004, 52, 1105-1113 10.1111/j.1532-5415.2004.52308.xSearch in Google Scholar PubMed

[31]Gianni P., Jan K.J., Douglas M.J., Stuart P.M., Tarnopolsky M.A., Oxidative stress and the mitochondrial theory of aging in human skeletal muscle, Exp. Gerontol., 2004, 39, 1391-1400 10.1016/j.exger.2004.06.002Search in Google Scholar PubMed

[32]Lim P.-S., Cheng Y.-M., Wei Y.-H., Increase in oxidative damage to lipids and proteins in skeletal muscle of uremic patients, Free Radic. Res., 2002, 36, 295-301 10.1080/10715760290019318Search in Google Scholar PubMed

[33]Stadtman E.R., Protein oxidation and aging, Free Radic. Res., 2006, 40, 1250-1258 10.1080/10715760600918142Search in Google Scholar PubMed

[34]Fulle S., Protasi F., Di Tano G., Pietrangelo T., Beltramin A., Boncompagni S., et al., The contribution of reactive oxygen species to sarcopenia and muscle ageing, Exp. Gerontol., 2004, 39, 17-24 10.1016/j.exger.2003.09.012Search in Google Scholar PubMed

[35]Howard C., Ferrucci L., Sun K., Fried L.P., Walston J., Varadhan R., et al., Oxidative protein damage is associated with poor grip strength among older women living in the community, J. Appl. Physiol., 2007, 103, 17-20 10.1152/japplphysiol.00133.2007Search in Google Scholar PubMed PubMed Central

[36]Payne G.W., Effect of inflammation on the aging microcirculation: impact on skeletal muscle blood flow control, Microcirculation, 2006, 13, 343-352 10.1080/10739680600618918Search in Google Scholar PubMed

[37]Dalal M., Ferrucci L., Sun K., Beck J., Fried L.P., Semba R.D., Elevated serum advanced glycation end products and poor grip strength in older community-dwelling women, J. Gerontol. A Biol. Sci. Med. Sci., 2009, 64, 132-137 10.1093/gerona/gln018Search in Google Scholar PubMed PubMed Central

[38]Wyss M., Kaddurah-Daouk R., Creatine and creatinine metabolism, Physiol. Rev., 2000, 80, 1107-1213 10.1152/physrev.2000.80.3.1107Search in Google Scholar PubMed

[39]Larsen R.G., Callahan D.M., Foulis S.A., Kent-Braun J.A., Age-related changes in oxidative capacity differ between locomotory muscles and are associated with physical activity behavior, Appl. Physiol. Nutr. Metab., 2012, 37, 88-99 10.1139/h11-135Search in Google Scholar PubMed PubMed Central

[40]McCully K.K., Fielding R.A., Evans W.J., Leigh J.S., Posner J.D., Relationships between in vivo and in vitro measurements of metabolism in young and old human calf muscles, J. Appl. Physiol., 1993, 75, 813-819 10.1152/jappl.1993.75.2.813Search in Google Scholar PubMed

[41]Möller P., Bergström J., Fürst P., Hellström K., Effect of aging on energy-rich phosphagens in human skeletal muscles, Clin. Sci., 1980, 58, 553-555 10.1042/cs0580553Search in Google Scholar PubMed

[42]Heymsfield S.B., Arteaga C., McManus C., Smith J., Moffitt S., Measurement of muscle mass in humans: validity of the 24-hour urinary creatinine method, Am. J. Clin. Nutr., 1983, 37, 478-494 10.1093/ajcn/37.3.478Search in Google Scholar PubMed

[43]Stimpson S.A., Turner S.M., Clifton L.G., Poole J.C., Mohammed H.A., Shearer T.W., et al., Total-body creatine pool size and skeletal muscle mass determination by creatine-(methyl-D3) dilution in rats, J. Appl. Physiol., 2012, 112, 1940-1948 10.1152/japplphysiol.00122.2012Search in Google Scholar PubMed

[44]Bemben M.G., Witten M.S., Carter J.M., Eliot K.A., Knehans A.W., Bemben D.A., The effects of supplementation with creatine and protein on muscle strength following a traditional resistance training program in middle-aged and older men, J. Nutr. Health Aging, 2010, 14, 155-159 10.1007/s12603-009-0124-8Search in Google Scholar

[45]Dalbo V.J., Roberts M.D., Lockwood C.M., Tucker P.S., Kreider R.B., Kerksick C.M., The effects of age on skeletal muscle and the phosphocreatine energy system: can creatine supplementation help older adults, Dyn. Med., 2009, 8, 6 10.1186/1476-5918-8-6Search in Google Scholar

[46]Proctor D.N., Balagopal P., Nair K.S., Age-related sarcopenia in humans is associated with reduced synthetic rates of specific muscle proteins, J. Nutr., 1998, 128 (Suppl. 2), 351S-355S 10.1093/jn/128.2.351SSearch in Google Scholar

[47]Greenlund L.J., Nair K.S., Sarcopenia - consequences, mechanisms, and potential therapies, Mech. Ageing Dev., 2003, 124, 287-299 10.1016/S0047-6374(02)00196-3Search in Google Scholar

[48]Sakuma K., Yamaguchi A., Sarcopenia and age-related endocrine function, Int. J. Endocrinol., 2012, 127362 10.1155/2012/127362Search in Google Scholar PubMed PubMed Central

[49]Stewart C.E., Pell J.M., IGF is/is not the major physiological regulator of muscle mass. J. Appl. Physiol. 2010, 108, 1820-1821; discussion 1823-1824; author reply 1832 10.1152/japplphysiol.01246.2009Search in Google Scholar PubMed

[50]Serra C., Tangherlini F., Rudy S., Lee D., Toraldo G., Sandor N.L., et al., Testosterone improves the regeneration of old and young mouse skeletal muscle, J. Gerontol. A Biol. Sci. Med. Sci., 2013, 68, 17-26 10.1093/gerona/gls083Search in Google Scholar PubMed PubMed Central

[51]Wagers A.J., Conboy I.M., Cellular and molecular signatures of muscle regeneration: current concepts and controversies in adult myogenesis, Cell, 2005, 122, 659-667 10.1016/j.cell.2005.08.021Search in Google Scholar PubMed

[52]Dubois V., Laurent M., Boonen S., Vanderschueren D., Claessens F., Androgens and skeletal muscle: cellular and molecular action mechanisms underlying the anabolic actions, Cell. Mol. Life Sci., 2012, 69, 1651-1667 10.1007/s00018-011-0883-3Search in Google Scholar PubMed

[53]Malkin C.J., Pugh P.J., Jones R.D., Kapoor D., Channer K.S., Jones T.H., The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men, J. Clin. Endocrinol. Metab., 2004, 89, 3313-3318 10.1210/jc.2003-031069Search in Google Scholar PubMed

[54]Grossmann M., Low testosterone in men with type 2 diabetes: significance and treatment, J. Clin. Endocrinol. Metab., 2011, 96, 2341-2353 10.1210/jc.2011-0118Search in Google Scholar PubMed

[55]Boland R., Role of vitamin D in skeletal muscle function, Endocr. Rev., 1986, 7, 434-448 10.1210/edrv-7-4-434Search in Google Scholar PubMed

[56]Bischoff H.A., Borchers M., Gudat F., Duermueller U., Theiler R., Stähelin H.B., et al., In situ detection of 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue, Histochem. J., 2001, 33, 19-24 10.1023/A:1017535728844Search in Google Scholar

[57]Zanello S.B., Collins E.D., Marinissen M.J., Norman A.W., Boland R.L., Vitamin D receptor expression in chicken muscle tissue and cultured myoblasts, Horm. Metab. Res., 1997, 29, 231-236 10.1055/s-2007-979027Search in Google Scholar PubMed

[58]Freedman L.P., Transcriptional targets of the vitamin D3 receptor-mediating cell cycle arrest and differentiation, J. Nutr., 1999, 129 (Suppl. 2), 581S-586S 10.1093/jn/129.2.581SSearch in Google Scholar PubMed

[59]McCary L.C., Staun M., DeLuca H.F., A characterization of vitamin D-independent intestinal calcium absorption in the osteopetrotic (op/op) mouse, Arch. Biochem. Biophys., 1999, 15, 368, 249-256 10.1006/abbi.1999.1286Search in Google Scholar PubMed

[60]Nader G.A., Esser K.A., Intracellular signaling specificity in skeletal muscle in response to different modes of exercise, J. Appl. Physiol., 2001, 90, 1936-1942 10.1152/jappl.2001.90.5.1936Search in Google Scholar PubMed

[61]Doherty T.J., Invited review: aging and sarcopenia, J. Appl. Physiol., 2003, 95, 1717-1727 10.1152/japplphysiol.00347.2003Search in Google Scholar PubMed

[62]Barzilay J.I., Blaum C., Moore T., Xue Q.L., Hirsch C.H., Walston J.D., et al., Insulin resistance and inflammation as precursors of frailty: the Cardiovascular Health Study, Arch. Intern. Med., 2007, 167, 635-641 10.1001/archinte.167.7.635Search in Google Scholar PubMed

[63]Trujillo M.E., Scherer P.E., Adipose tissue-derived factors: impact on health and disease, Endocr. Rev., 2006, 27, 762-768 10.1210/er.2006-0033Search in Google Scholar PubMed

[64]Mulero J., Zafrilla P., Martinez-Cacha A., Oxidative stress, frailty and cognitive decline, J. Nutr. Health Aging, 2011, 15, 756-760 10.1007/s12603-011-0130-5Search in Google Scholar

[65]Adachi J., Kumar C., Zhang Y., Olsen J.V., Mann M., The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins, Genome Biol., 2006, 7, R80 10.1186/gb-2006-7-9-r80Search in Google Scholar

[66]Kentsis A., Monigatti F., Dorff K., Campagne F., Bachur R., Steen H., Urine proteomics for profiling of human disease using high accuracy mass spectrometry, Proteomics Clin. Appl., 2009, 3, 1052-1061 10.1002/prca.200900008Search in Google Scholar

[67]Li Q.-R., Fan K.-X., Li R.-X., Dai J., Wu C.-C., Zhao S.-L., et al., A comprehensive and non-prefractionation on the protein level approach for the human urinary proteome: touching phosphorylation in urine, Rapid Commun. Mass Spectrom., 2010, 24, 823-832 10.1002/rcm.4441Search in Google Scholar

[68]Marimuthu A., O’Meally R.N., Chaerkady R., Subbannayya Y., Nanjappa V., Kumar P., et al., A comprehensive map of the human urinary proteome, J. Proteome Res., 2011, 10, 2734-2743 10.1021/pr2003038Search in Google Scholar

[69]Nagaraj N., Mann M., Quantitative analysis of the intra- and inter-individual variability of the normal urinary proteome, J. Proteome Res., 2011, 10, 637-645 10.1021/pr100835sSearch in Google Scholar

[70]Niemelä O., Radioimmunoassays for type III procollagen amino-terminal peptides in humans, Clin. Chem., 1985, 31, 1301-1304 10.1093/clinchem/31.8.1301Search in Google Scholar

[71]Niemelä O., Risteli L., Parkkinen J., Risteli J., Purification and characterization of the N-terminal propeptide of human type III procollagen, Biochem. J., 1985, 232, 145-150 10.1042/bj2320145Search in Google Scholar

[72]Prockop D.J., Kivirikko K.I., Tuderman L., Guzman N.A., The biosynthesis of collagen and its disorders (first of two parts), N. Engl. J. Med., 1979, 301, 13-23 10.1056/NEJM197907053010104Search in Google Scholar

[73]Danne T., Grüters A., Schuppan D., Quantas N., Enders I., Weber B., Relationship of procollagen type III propeptide-related antigens in serum to somatic growth in healthy children and patients with growth disorders, J. Pediatr., 1989, 114, 257-260 10.1016/S0022-3476(89)80792-9Search in Google Scholar

[74]Erotokritou-Mulligan I., Bassett E.E., Bartlett C., Cowan D., McHugh C., Seah R., et al., The effect of sports injury on insulin-like growth factor-I and type 3 procollagen: implications for detection of growth hormone abuse in athletes, J. Clin. Endocrinol. Metab., 2008, 93,2760-2763 10.1210/jc.2007-2801Search in Google Scholar PubMed

[75]Nelson A.E., Howe C.J., Nguyen T.V., Leung K.-C., Trout G.J., Seibel M.J., et al., Influence of demographic factors and sport type on growth hormone-responsive markers in elite athletes, J. Clin. Endocrinol. Metab., 2006, 91, 4424-4432 10.1210/jc.2006-0612Search in Google Scholar PubMed

[76]Nguyen T.V., Nelson A.E., Howe C.J., Seibel M.J., Baxter R.C., Handelsman D.J., et al., Within-subject variability and analytic imprecision of insulinlike growth factor axis and collagen markers: implications for clinical diagnosis and doping tests, Clin. Chem., 2008, 54, 1268-1276 10.1373/clinchem.2008.105726Search in Google Scholar PubMed

[77]Verde G.G., Santi I., Chiodini P., Cozzi R., Dallabonzana D., Oppizzi G., et al., Serum type III procollagen propeptide levels in acromegalic patients, J. Clin. Endocrinol. Metab., 1986, 63, 1406-1410 10.1210/jcem-63-6-1406Search in Google Scholar PubMed

[78]Erotokritou-Mulligan I., Bassett E.E., Kniess A., Sönksen P.H., Holt R.I., Validation of the growth hormone (GH)-dependent marker method of detecting GH abuse in sport through the use of independent data sets, Growth Horm. IGF Res., 2007, 17, 416-423 10.1016/j.ghir.2007.04.013Search in Google Scholar PubMed

[79]Garma T., Kobayashi C., Haddad F., Adams G.R., Bodell P.W., Baldwin K.M., Similar acute molecular responses to equivalent volumes of isometric, lengthening, or shortening mode resistance exercise, J. Appl. Physiol., 2007, 102, 135-143 10.1152/japplphysiol.00776.2006Search in Google Scholar PubMed

[80]Longobardi S., Keay N., Ehrnborg C., Cittadini A., Rosén T., Dall R., et al., Growth hormone (GH) effects on bone and collagen turnover in healthy adults and its potential as a marker of GH abuse in sports: a double blind, placebo-controlled study. The GH-2000 Study Group, J. Clin. Endocrinol. Metab., 2000, 85, 1505-1512 10.1210/jc.85.4.1505Search in Google Scholar

[81]Nelson A.E., Meinhardt U., Hansen J.L., Walker I.H., Stone G., Howe C.J., et al., Pharmacodynamics of growth hormone abuse biomarkers and the influence of gender and testosterone: a randomized double-blind placebo-controlled study in young recreational athletes, J. Clin. Endocrinol. Metab., 2008, 93, 2213-2222 10.1210/jc.2008-0402Search in Google Scholar PubMed

[82]Wallace J.D., Cuneo R.C., Lundberg P.A., Rosén T., Jørgensen J.O., Longobardi S., et al., Responses of markers of bone and collagen turnover to exercise, growth hormone (GH) administration, and GH withdrawal in trained adult males, J. Clin. Endocrinol. Metab., 2000, 85, 124-133 10.1210/jc.85.1.124Search in Google Scholar

[83]Erotokritou-Mulligan I., Bassett E.E., Cowan D.A., Bartlett C., McHugh C., Sönksen P.H., et al., Influence of ethnicity on IGF-I and procollagen III peptide (P-III-P) in elite athletes and its effect on the ability to detect GH abuse, Clin. Endocrinol., 2009, 70, 161-168 10.1111/j.1365-2265.2008.03319.xSearch in Google Scholar PubMed

[84]McHugh C.M., Park R.T., Sönksen P.H., Holt R.I., Challenges in detecting the abuse of growth hormone in sport, Clin. Chem., 2005, 51, 1587-1593 10.1373/clinchem.2005.047845Search in Google Scholar PubMed

[85]Powrie J.K., Bassett E.E., Rosén T., Jørgensen J.O., Napoli R., Saccà L., et al., Detection of growth hormone abuse in sport, Growth Horm. IGF Res., 2007, 17, 220-226 10.1016/j.ghir.2007.01.011Search in Google Scholar PubMed

[86]Bhasin S., He E.J., Kawakubo M., Schroeder E.T., Yarasheski K., Opiteck G.J., et al., N-terminal propeptide of type III procollagen as a biomarker of anabolic response to recombinant human GH and testosterone, J. Clin. Endocrinol. Metab., 2009, 94, 4224-4233 10.1210/jc.2009-1434Search in Google Scholar PubMed PubMed Central

[87]Langley B., Thomas M., Bishop A., Sharma M., Gilmour S., Kambadur R., Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J. Biol. Chem., 2002, 277, 49831-49840 10.1074/jbc.M204291200Search in Google Scholar PubMed

[88]McPherron A.C., Lawler A.M., Lee S.J., Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member, Nature, 1997, 387, 83-90 10.1038/387083a0Search in Google Scholar PubMed

[89]Thomas M., Langley B., Berry C., Sharma M., Kirk S., Bass J., et al., Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation, J. Biol. Chem., 2000, 275, 40235-40243 10.1074/jbc.M004356200Search in Google Scholar PubMed

[90]Zimmers T.A., Davies M.V., Koniaris L.G., Haynes P., Esquela A.F., Tomkinson K.N., et al., Induction of cachexia in mice by systemically administered myostatin, Science, 2002, 296, 1486-1488 10.1126/science.1069525Search in Google Scholar PubMed

[91]Léger B., Derave W., De Bock K., Hespel P., Russell A.P., Human sarcopenia reveals an increase in SOCS-3 and myostatin and a reduced efficiency of Akt phosphorylation, Rejuvenation Res., 2008, 11, 163-175B 10.1089/rej.2007.0588Search in Google Scholar PubMed

[92]Siriett V., Platt L., Salerno M.S., Ling N., Kambadur R., Sharma M., Prolonged absence of myostatin reduces sarcopenia, J. Cell. Physiol., 2006, 209, 866-873 10.1002/jcp.20778Search in Google Scholar PubMed

[93]Siriett V., Salerno M.S., Berry C., Nicholas G., Bower R., Kambadur R., et al., Antagonism of myostatin enhances muscle regeneration during sarcopenia, Mol. Ther., 2007, 15, 1463-1470 10.1038/sj.mt.6300182Search in Google Scholar PubMed

[94]Wagner K.R., Liu X., Chang X., Allen R.E., Muscle regeneration in the prolonged absence of myostatin, Proc. Natl. Acad. Sci. USA, 2005, 102, 2519-2524 10.1073/pnas.0408729102Search in Google Scholar

[95]Bogdanovich S., Krag T.O.B., Barton E.R., Morris L.D., Whittemore L.-A., Ahima R.S., et al., Functional improvement of dystrophic muscle by myostatin blockade, Nature, 2002, 420, 418-421 10.1038/nature01154Search in Google Scholar

[96]Whittemore L.-A., Song K., Li X., Aghajanian J., Davies M., Girgenrath S., et al., Inhibition of myostatin in adult mice increases skeletal muscle mass and strength, Biochem. Biophys. Res. Commun., 2003, 300, 965-971 10.1016/S0006-291X(02)02953-4Search in Google Scholar

[97]Smith R.C., Lin B.K., Myostatin inhibitors as therapies for muscle wasting associated with cancer and other disorders, Curr. Opin. Support. Palliat. Care, 2013, 7, 352-360 10.1097/SPC.0000000000000013Search in Google Scholar PubMed PubMed Central

[98]Wu H., Xiong W.C., Mei L., To build a synapse: signaling pathways in neuromuscular junction assembly, Development, 2010, 137, 1017-1033 10.1242/dev.038711Search in Google Scholar PubMed PubMed Central

[99]Bolliger M.F., Zurlinden A., Lüscher D., Bütikofer L., Shakhova O., Francolini M., et al., Specific proteolytic cleavage of agrin regulates maturation of the neuromuscular junction, J. Cell Sci., 2010, 123, 3944-3955 10.1242/jcs.072090Search in Google Scholar PubMed

[100]Frischknecht R., Fejtova A., Viesti M., Stephan A., Sonderegger P., Activity-induced synaptic capture and exocytosis of the neuronal serine protease neurotrypsin, J. Neurosci., 2008, 28, 1568-1579 10.1523/JNEUROSCI.3398-07.2008Search in Google Scholar PubMed PubMed Central

[101]Stephan A., Mateos J.M., Kozlov S.V., Cinelli P., Kistler A.D., Hettwer S., et al., Neurotrypsin cleaves agrin locally at the synapse, FASEB J., 2008, 22, 1861-1873 10.1096/fj.07-100008Search in Google Scholar PubMed

[102]Bütikofer L., Zurlinden A., Bolliger M.F., Kunz B., Sonderegger P., Destabilization of the neuromuscular junction by proteolytic cleavage of agrin results in precocious sarcopenia, FASEB J., 2011, 25, 4378-4393 10.1096/fj.11-191262Search in Google Scholar PubMed

[103]LIFE Study Investigators, Pahor M., Blair S.N., Espeland M., Fielding R., Gill T.M., et al., Effects of a physical activity intervention on measures of physical performance: results of the lifestyle interventions and independence for Elders Pilot (LIFE-P) study, J. Gerontol. A Biol. Sci. Med. Sci., 2006, 61, 1157-1165 10.1093/gerona/61.11.1157Search in Google Scholar PubMed

Search in Google Scholar

Received: 2015-01-07
Accepted: 2015-01-28
Published Online: 2015-03-17
Published in Print: 2015-01-01

© 2015 Bertrand Fougère et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/tnsci-2015-0009/html
Scroll to top button