Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) May 7, 2018

Plasmonic Cu/CuCl/Cu2S/Ag and Cu/CuCl/Cu2S/Au Supports with Peroxidase-Like Activity: Insights from Surface Enhanced Raman Spectroscopy

  • Wei Song , Peter Hildebrandt and Inez M. Weidinger EMAIL logo

Abstract

In the present study, we present nanostructured bimetallic Cu/CuCl/Cu2S/Au(Ag) supports that exhibit plasmonic electromagnetic field enhancement and peroxidase-like catalytic activity. The Cu2S component acts as the peroxidase-like catalyst, while the Au or Ag component provides the necessary light enhancement for surface enhanced Raman spectroscopic (SERS) studies of surface bound molecular reactants. As a test reaction the catalytic oxidation of 3,3′,5,5′-tetramethylbenzidine (TMB) in presence of H2O2 was investigated. The comparison of product evolution in solution measured by UV-Vis spectroscopy and on the surface measured via SERS is able to give more insight into the different steps involved in the overall catalysis.

Acknowledgements

This work was supported by the DFG (Cluster of Excellence EXC314 UniCat) and the National Natural Science Foundation of China (21473068).

References

1. W. Liu, A. K. Herrmann, N. C. Bigall, P. Rodriguez, D. Wen, M. Oezaslan, T. J. Schmidt, N. Gaponik, A. Eychmüller, Acc. Chem. Res. 48 (2015) 154.Search in Google Scholar

2. Q. Fu, F. Yang, X. Bao, Acc. Chem. Res. 46 (2013) 1692.Search in Google Scholar

3. Z. Zhang, B. Xu, X. Wang, Chem. Soc. Rev. 43 (2014) 7870.Search in Google Scholar

4. J. Y. Park, L. R. Baker, G. A. Somorjai, Chem. Rev. 115 (2015) 2781.Search in Google Scholar

5. A. Sivanesan, H. K. Ly, J. Kozuch, M. Sezer, U. Kuhlmann, A. Fischer, I. M. Weidinger, Chem. Commun. 47 (2011) 3553.Search in Google Scholar

6. A. Sivanesan, G. Kalaivani, A. Fischer, K. Stiba, S. Leimkühler, I. M. Weidinger, A. Chem, Anal. Chem. 84 (2012) 5759.Search in Google Scholar

7. O. Diaz-Morales, F. Calle-Vallejo, C. D. Munck, M. T. M. Koper, Chem. Sci. 4 (2013) 2334.Search in Google Scholar

8. F. J. Vidal-Iglesias, J. Solla-Gullon, J. M. Orts, A. Rodes, J. M. Perez, J. Phys. Chem. C 119 (2015) 12312.Search in Google Scholar

9. D.-Y. Wu, X.-M. Liu, Y.-F. Huang, B. Ren, X. Xu, Z.-Q. Tian, J. Phys. Chem. C 113 (2009) 18212.Search in Google Scholar

10. B. Dong, Y. Fang, X. Chen, H. Xu, M. Sun, Langmuir 27 (2011) 10677.Search in Google Scholar

11. Q. Ding, H. Zhou, H. Zhang, Y. Zhang, G. Wang, H. Zhao, J. Mater. Chem. A 4 (2016) 8866.Search in Google Scholar

12. W. Song, C. J. Querebillo, R. Gotz, S. Katz, U. Kuhlmann, U. Gernert, I. M. Weidinger, P. Hildebrandt, Nanoscale 9 (2017) 8380.Search in Google Scholar

13. M. Muniz-Miranda, Appl. Catal. B 146 (2014) 147.Search in Google Scholar

14. C. Wen, F. Liao, S. Liu, Y. Zhao, Z. Kang, X. Zhang, M. Shao, Chem. Commun. 49 (2013) 3049.Search in Google Scholar

15. W. Song, W. Ji, S. Vantasin, I. Tanabe, B. Zhao, Y. Ozaki, J. Mater. Chem. A 3 (2015) 13556.Search in Google Scholar

16. W. Song, G. D. Nie, W. Ji, Y. Z. Jiang, X. F. Lu, B. Zhao, Y. Ozaki, RSC Adv. 6 (2016) 54456.Search in Google Scholar

17. Y. Guo, H. Wang, X. W. Ma, J. Jin, W. Ji, X. Wang, W. Song, B. Zhao, C. Y. He, ACS Appl. Mater. Interf. 9 (2017) 19074.Search in Google Scholar

18. M. Sezer, S. Frielingsdorf, D. Millo, N. Heidary, T. Utesch, M.-A. Mroginski, B. Friedrich, P. Hildebrandt, I. Zebger, I. M. Weidinger, J. Phys. Chem. B 115 (2011) 10368.Search in Google Scholar

19. P. Kielb, M. Sezer, S. Katz, F. Lopez, C. Schulz, L. Gorton, R. Ludwig, U. Wollenberger, I. Zebger, I. M. Weidinger, Chemphyschem 16 (2015) 1960.Search in Google Scholar

20. K. Sengupta, S. Chatterjee, S. Samanta, A. Dey, Proc. Natl. Acad. Sci. USA 110 (2013) 8431.Search in Google Scholar

21. H. Wei, E. Wang, Chem. Soc. Rev. 42 (2013) 6060.Search in Google Scholar

22. Y. Lin, J. Ren, X. Qu, Acc. Chem. Res. 47 (2014) 1097.Search in Google Scholar

23. L. Z. Gao, J. Zhuang, L. Nie, J. B. Zhang, Y. Zhang, N. Gu, T. H. Wang, J. Feng, D. L. Yang, S. Perrett, X. Yan, Nat. Nanotechnol. 2 (2007) 577.Search in Google Scholar

24. G. Nie, L. Zhang, X. Lu, X. Bian, W. Sun, C. Wang, Dalton Trans. 42 (2013) 14006.Search in Google Scholar

25. Y. Jiang, N. Song, C. Wang, N. Pinna, X. Lu, J. Mater. Chem. B 5 (2017) 5499.Search in Google Scholar

26. Z. Yang, F. Ma, Y. Zhu, S. Chen, C. Wang, X. Lu, Dalton Trans. 46 (2017) 11171.Search in Google Scholar

27. R. André, F. Natálio, M. Humanes, J. Leppin, K. Heinze, R. Wever, H. C. Schröder, W. E. G. Müller, W. Tremel, Adv. Funct. Mater. 21 (2011) 501.Search in Google Scholar

28. M. Chi, Y. Zhu, Z. Yang, M. Gao, S. Chen, N. Song, C. Wang, X. Lu, Nanotechnology 28 (2017) 295704.Search in Google Scholar

29. Z. Jiang, P. Gao, Y. Lin, C. Huang, Y. Li, Anal. Chem. 87 (2015) 12177.Search in Google Scholar

30. W. Song, M. Chi, M. Gao, B. Zhao, C. Wang, X. Lu, J. Mater. Chem. C 5 (2017) 7465.Search in Google Scholar

31. Y. Xia, E. Kim, M. Mrksich, G. M. Whitesides, Chem. Mater. 8 (1996) 601.Search in Google Scholar

32. B. Zhao, S. Li, Q. Zhang, Y. Wang, C. Song, Z. Zhang, K. Yu, Chem. Eng. J. 230 (2013) 236.Search in Google Scholar

33. J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, Z. Q. Tian, Nature 464 (2010) 392.Search in Google Scholar

34. J. A. Sánchezgil, J. V. Garcı́Aramos, J. Chem. Phys. 108 (1998) 317.Search in Google Scholar

35. C. David, M. Richter, A. Knorr, I. M. Weidinger, P. Hildebrandt, J. Chem. Phys. 132 (2010) 24712.Search in Google Scholar

36. E. Siebert, Y. Rippers, S. Frielingsdorf, J. Fritsch, A. Schmidt, J. Kalms, S. Katz, O. Lenz, P. Scheerer, L. Paasche, V. Pelmenschikov, U. Kuhlmann, M. A. Mroginski, I. Zebger, P. Hildebrandt, J. Phys. Chem. B 119 (2015) 13785.Search in Google Scholar

Received: 2018-01-29
Accepted: 2018-03-05
Published Online: 2018-05-07
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/zpch-2018-1126/html
Scroll to top button