Skip to content
Open Access Published by De Gruyter Open Access January 4, 2013

Compactness of Special Functions of Bounded Higher Variation

  • Luigi Ambrosio EMAIL logo and Francesco Ghiraldin

Abstract

Given an open set Ω ⊂ Rm and n > 1, we introduce the new spaces GBnV(Ω) of Generalized functions of bounded higher variation and GSBnV(Ω) of Generalized special functions of bounded higher variation that generalize, respectively, the space BnV introduced by Jerrard and Soner in [43] and the corresponding SBnV space studied by De Lellis in [24]. In this class of spaces, which allow as in [43] the description of singularities of codimension n, the distributional jacobian Ju need not have finite mass: roughly speaking, finiteness of mass is not required for the (m−n)-dimensional part of Ju, but only finiteness of size. In the space GSBnV we are able to provide compactness of sublevel sets and lower semicontinuity of Mumford-Shah type functionals, in the same spirit of the codimension 1 theory [5,6].

References

R. A. Adams. Sobolev spaces. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. Search in Google Scholar

R. A. Adams and J. J. F. Fournier. Sobolev spaces, volume 140 of Pure and Applied Mathematics (Amsterdam). Elsevier/Academic Press, Amsterdam, second edition, 2003. Search in Google Scholar

G. Alberti, S. Baldo, and G. Orlandi. Variational convergence for functionals of Ginzburg-Landau type. Indiana Univ. Math. J., 54(5):1411–1472, 2005. 10.1512/iumj.2005.54.2601Search in Google Scholar

F. Almgren. Deformations and multiple-valued functions. In Geometric measure theory and the calculus of variations (Arcata, Calif., 1984), volume 44 of Proc. Sympos. Pure Math., pages 29–130. Amer. Math. Soc., Providence, RI, 1986. 10.1090/pspum/044/840268Search in Google Scholar

L. Ambrosio. A compactness theorem for a new class of functions of bounded variation. Boll. Un. Mat. Ital. B (7), 3(4):857–881, 1989. Search in Google Scholar

L. Ambrosio. A new proof of the SBV compactness theorem. Calc. Var. Partial Differential Equations, 3(1):127–137, 1995. 10.1007/BF01190895Search in Google Scholar

L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 2000. Search in Google Scholar

L. Ambrosio and F. Ghiraldin. Flat chains of finite size in metric spaces. Annales de l’Institut Henri Poincare (C) Non Linear Analysis, doi:10.1016/j.anihpc.2012.06.002, 2012. 10.1016/j.anihpc.2012.06.002Search in Google Scholar

L. Ambrosio and B. Kirchheim. Currents in metric spaces. Acta Math., 185(1):1–80, 2000. 10.1007/BF02392711Search in Google Scholar

L. Ambrosio and P. Tilli. Topics on analysis in metric spaces, volume 25 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2004. Search in Google Scholar

L. Ambrosio and V. M. Tortorelli. Approximation of functionals depending on jumps by elliptic functionals via г-convergence. Comm. Pure Appl. Math., 43(8):999–1036, 1990. 10.1002/cpa.3160430805Search in Google Scholar

L. Ambrosio and V. M. Tortorelli. On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B (7), 6(1):105–123, 1992. Search in Google Scholar

J. M. Ball. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal., 63(4):337–403, 1976/77. 10.1007/BF00279992Search in Google Scholar

A. Bressan. Hyperbolic systems of conservation laws, volume 20 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford, 2000. The one-dimensional Cauchy problem. Search in Google Scholar

H. Brezis, J.-M. Coron, and E. H. Lieb. Harmonic maps with defects. Comm. Math. Phys., 107(4):649–705, 1986. 10.1007/BF01205490Search in Google Scholar

H. Brezis and H.-M. Nguyen. The Jacobian determinant revisited. Invent. Math., 185(1):17–54, 2011. 10.1007/s00222-010-0300-9Search in Google Scholar

H. Brezis and L. Nirenberg. Degree theory and BMO. I. Compact manifolds without boundaries. Selecta Math. (N.S.), 1(2):197–263, 1995. 10.1007/BF01671566Search in Google Scholar

P. Celada and G. Dal Maso. Further remarks on the lower semicontinuity of polyconvex integrals. Ann. Inst. H. Poincaré Anal. Non Linéaire, 11(6):661–691, 1994. 10.1016/s0294-1449(16)30173-1Search in Google Scholar

R. Coifman, P.-L. Lions, Y. Meyer, and S. Semmes. Compensated compactness and Hardy spaces. J. Math. Pures Appl. (9), 72(3):247–286, 1993. Search in Google Scholar

C. M. Dafermos. Hyperbolic conservation laws in continuum physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, third edition, 2010. 10.1007/978-3-642-04048-1Search in Google Scholar

G. Dal Maso. Generalised functions of bounded deformation. Preprint, 2011. Search in Google Scholar

E. De Giorgi and L. Ambrosio. New functionals in calculus of variations. In Nonsmooth optimization and related topics (Erice, 1988), volume 43 of Ettore Majorana Internat. Sci. Ser. Phys. Sci., pages 49–59. Plenum, New York, 1989. 10.1007/978-1-4757-6019-4_4Search in Google Scholar

E. De Giorgi, M. Carriero, and A. Leaci. Existence theorem for a minimum problem with free discontinuity set. Arch. Rational Mech. Anal., 108(3):195–218, 1989. 10.1007/BF01052971Search in Google Scholar

C. De Lellis. Some fine properties of currents and applications to distributional Jacobians. Proc. Roy. Soc. Edinburgh Sect. A, 132(4):815–842, 2002. 10.1017/S030821050000189XSearch in Google Scholar

C. De Lellis. Some remarks on the distributional Jacobian. Nonlinear Anal., 53(7-8):1101–1114, 2003. 10.1016/S0362-546X(03)00046-4Search in Google Scholar

C. De Lellis and F. Ghiraldin. An extension of the identity Det = det. C. R. Math. Acad. Sci. Paris, 348(17-18):973– 976, 2010. 10.1016/j.crma.2010.07.019Search in Google Scholar

T. De Pauw and R. Hardt. Rectifiable and flat G chains in a metric space. Amer. J. Math., 134(1):1–69, 2012. 10.1353/ajm.2012.0004Search in Google Scholar

G. De Philippis. Weak notions of Jacobian determinant and relaxation. ESAIM Control Optim. Calc. Var., 18(1):181– 207, 2012. 10.1051/cocv/2010047Search in Google Scholar

G. de Rham. Variétés différentiables. Formes, courants, formes harmoniques. Actualités Sci. Ind., no. 1222 = Publ. Inst. Math. Univ. Nancago III. Hermann et Cie, Paris, 1955. Search in Google Scholar

E. DiBenedetto. C1+α local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal., 7(8):827– 850, 1983. 10.1016/0362-546X(83)90061-5Search in Google Scholar

H. Federer. Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer- Verlag New York Inc., New York, 1969. Search in Google Scholar

H. Federer. Flat chains with positive densities. Indiana Univ. Math. J., 35(2):413–424, 1986. 10.1512/iumj.1986.35.35025Search in Google Scholar

H. Federer and W. H. Fleming. Normal and integral currents. Ann. of Math. (2), 72:458–520, 1960. 10.2307/1970227Search in Google Scholar

W. H. Fleming. Flat chains over a finite coefficient group. Trans. Amer. Math. Soc., 121:160–186, 1966. 10.1090/S0002-9947-1966-0185084-5Search in Google Scholar

I. Fonseca, G. Leoni, and J. Malý. Weak continuity and lower semicontinuity results for determinants. Arch. Ration. Mech. Anal., 178(3):411–448, 2005. 10.1007/s00205-005-0377-2Search in Google Scholar

N. Fusco and J. E. Hutchinson. A direct proof for lower semicontinuity of polyconvex functionals. Manuscripta Math., 87(1):35–50, 1995. 10.1007/BF02570460Search in Google Scholar

F. Ghiraldin. Forthcoming. Search in Google Scholar

M. Giaquinta, G. Modica, and J. Soucek. Cartesian currents in the calculus of variations. I, II, volume 37, 38 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, 1998. Search in Google Scholar

R. Hardt, F. Lin, and C. Wang. The p-energy minimality of x/|x|. Comm. Anal. Geom., 6(1):141–152, 1998. 10.4310/CAG.1998.v6.n1.a4Search in Google Scholar

R. Hardt and T. Rivière. Connecting topological Hopf singularities. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2(2):287–344, 2003. Search in Google Scholar

A. D. Ioffe. On lower semicontinuity of integral functionals. I. SIAM J. Control Optimization, 15(4):521–538, 1977. 10.1137/0315035Search in Google Scholar

A. D. Ioffe. On lower semicontinuity of integral functionals. II. SIAM J. Control Optimization, 15(6):991–1000, 1977. 10.1137/0315064Search in Google Scholar

R. L. Jerrard and H. M. Soner. Functions of bounded higher variation. Indiana Univ. Math. J., 51(3):645–677, 2002. 10.1512/iumj.2002.51.2229Search in Google Scholar

P. Marcellini. On the definition and the lower semicontinuity of certain quasiconvex integrals. Ann. Inst. H. Poincaré Anal. Non Linéaire, 3(5):391–409, 1986. 10.1016/s0294-1449(16)30379-1Search in Google Scholar

L. Modica and S. Mortola. Il limite nella 􀀀-convergenza di una famiglia di funzionali ellittici. Boll. Un. Mat. Ital. A (5), 14(3):526–529, 1977. Search in Google Scholar

C. B. Morrey, Jr. Multiple integrals in the calculus of variations. Die Grundlehren der mathematischen Wissenschaften, Band 130. Springer-Verlag New York, Inc., New York, 1966. 10.1007/978-3-540-69952-1Search in Google Scholar

D. Mucci. A variational problem involving the distributional determinant. Riv. Math. Univ. Parma (N.S.), 1(2):321– 345, 2010. Search in Google Scholar

D. Mucci. Graphs of vector valued maps: decomposition of the boundary. 2011. Search in Google Scholar

S. Müller. Det = det. A remark on the distributional determinant. C. R. Acad. Sci. Paris Sér. I Math., 311(1):13–17, 1990. Search in Google Scholar

S. Müller. On the singular support of the distributional determinant. Ann. Inst. H. Poincaré Anal. Non Linéaire, 10(6):657–696, 1993. 10.1016/s0294-1449(16)30201-3Search in Google Scholar

S. Müller and S. J. Spector. An existence theory for nonlinear elasticity that allows for cavitation. Arch. Rational Mech. Anal., 131(1):1–66, 1995. 10.1007/BF00386070Search in Google Scholar

D. Mumford and J. Shah. Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math., 42(5):577–685, 1989. 10.1002/cpa.3160420503Search in Google Scholar

L. Schwartz. Théorie des distributions. Publications de l’Institut de Mathématique de l’Université de Strasbourg, No. IX-X. Nouvelle édition, entiérement corrigée, refondue et augmentée. Hermann, Paris, 1966. Search in Google Scholar

E. M. Stein. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, volume 43 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1993. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III. 10.1515/9781400883929Search in Google Scholar

V. Šverák. Regularity properties of deformations with finite energy. Arch. Rational Mech. Anal., 100(2):105–127, 1988. 10.1007/BF00282200Search in Google Scholar

K. Uhlenbeck. Regularity for a class of non-linear elliptic systems. Acta Math., 138(3-4):219–240, 1977. 10.1007/BF02392316Search in Google Scholar

B. White. Rectifiability of flat chains. Ann. of Math. (2), 150(1):165–184, 1999. 10.2307/121100Search in Google Scholar

Received: 2012-10-16
Accepted: 2012-12-7
Published Online: 2013-01-04

©2012 Versita Sp. z o.o.

This content is open access.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/agms-2012-0001/html
Scroll to top button