Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 8, 2005

Rab6 interacts with the mint3 adaptor protein

  • Iskender Teber , Fumiko Nagano , Joachim Kremerskothen , Konstantinos Bilbilis , Bruno Goud and Angelika Barnekow
From the journal Biological Chemistry

Abstract

The Rab6 GTPase regulates a retrograde transport route connecting endosomes and the endoplasmic reticulum (ER) via the Golgi apparatus. Recently it was shown that active (GTP-loaded) Rab6A regulates intracellular processing of the amyloid precursor protein (APP). To characterize the role of Rab6A in APP trafficking and to identify effector proteins of the active Rab6A protein, we screened a human placenta cDNA library using the yeast two-hybrid system. We isolated an interacting cDNA clone encoding part of the adaptor protein mint3. The interaction between Rab6A and mint3 is GTP-dependent and requires the complete phosphotyrosine-binding (PTB) domain of the mint protein, which also mediates the association with APP. By confocal microscopy we show that Rab6A, mint3 and APP co-localize at Golgi membranes in HeLa cells. Density gradient centrifugation of cytosolic extracts confirms a common distribution of these three proteins. Our data suggest that mint3 links Rab6A to APP traffic.

:

Corresponding author

References

Biederer, T., Cao, X., Südhof, T.C., and Liu, X. (2002). Regulation of the APP-dependent transcription complexes by Mint/X11s: differential functions of Mint isoforms. J. Neurosci.22, 7340–7351.10.1523/JNEUROSCI.22-17-07340.2002Search in Google Scholar

Borg, J.P., Ooi, J., Levy, E., and Margolis, B. (1996). The phosphotyrosine interaction domains of X11 and FE65 bind to distinct sites on the YENPTY motif of amyloid precursor protein. Mol. Cell. Biol.16, 6229–6241.10.1128/MCB.16.11.6229Search in Google Scholar PubMed PubMed Central

Duclos, F. and Koenig, M. (1995). Comparison of primary structure of a neuron-specific protein, X11, between human and mouse. Mamm. Genome6, 57–58.10.1007/BF00350899Search in Google Scholar PubMed

Dugan, J.M., deWit, C., McConlogue, L., and Maltese, W.A. (1995). The Ras-related GTP-binding protein, Rab1B, regulates early steps in exocytic transport and processing of beta-amyloid precursor protein. J. Biol. Chem.270, 10982–10989.10.1074/jbc.270.18.10982Search in Google Scholar PubMed

Echard, A., Jollivet, F., Martinez, O., Lacapere, J.J., Rousselet, A., Janoueix-Lerosey, I., and Goud, B. (1998). Interaction of a Golgi-associated kinesin-like protein with Rab6. Science279, 580–585.10.1126/science.279.5350.580Search in Google Scholar PubMed

Echard, A., Opdam, F.J.M., de Leeuw, H.J.P.C., Jollivet, F., Savelkoul, P., Hendriks, W., Voorberg, J., Goud, B., and Fransen, J.A. (2000). Alternative splicing of the human Rab6A gene generates two close but functionally different isoforms. Mol. Biol. Cell11, 3819–3833.10.1091/mbc.11.11.3819Search in Google Scholar PubMed PubMed Central

Goud, B., Zahraoui, A., Tavitian, A., and Saraste, J. (1990). Small GTP-binding protein associated with Golgi cisternae. Nature345, 553–556.10.1038/345553a0Search in Google Scholar PubMed

Greenfield, J.P., Leung, L.W., Cai, D., Kaasik, K., Gross, R.S., Rodriguez-Boulan, E., Greengard, P., and Xu, H. (2002). Estrogen lowers Alzheimer beta-amyloid generation by stimulating trans-Golgi network vesicle biogenesis. J. Biol. Chem.277, 12128–12136.10.1074/jbc.M110009200Search in Google Scholar PubMed

Hill, K., Li, Y., Bennett, M., McKay, M., Zhu, X., Shern, J., Torre, E., Lah, J.J., Levey, A.I., and Kahn, R.A. (2003). Munc18 interacting proteins: ADP-ribosylation factor-dependent coat proteins that regulate the traffic of β-Alzheimer's precursor protein. J. Biol. Chem.278, 36032–36040.10.1074/jbc.M301632200Search in Google Scholar PubMed

Janoueix-Lerosey, I., Jollivet, F., Camonis, J., Marche, P.N., and Goud, B. (1995). Two-hybrid system screen with the small GTP-binding protein Rab6. Identification of novel mouse GDP dissociation inhibitor isoform and two other potential partners of Rab6. J. Biol. Chem.270, 14801–14808.Search in Google Scholar

King, G.D. and Turner, R.S. (2004). Adaptor protein interactions: modulators of amyloid precursor protein metabolism and Alzheimer's disease risk? Exp. Neurol.185, 208–219.10.1016/j.expneurol.2003.10.011Search in Google Scholar PubMed

Kremerskothen, J., Plaas, C., Buther, K., Finger, I., Veltel, S., Matanis, T., Liedtke, T., and Barnekow, A. (2003). Characterization of KIBRA, a novel WW domain-containing protein. Biochem. Biophys. Res. Commun.300, 862–867.10.1016/S0006-291X(02)02945-5Search in Google Scholar

Mallard, F., Tang, B.L., Galli, T., Tenza, D., Saint-Pol, A., Yue, X., Antony, C., Hong, W., Goud, B., and Johannes, L. (2002). Early/recycling endosomes-to-TGN transport involves two SNARE complexes and a Rab6 isoform. J. Cell Biol.156, 653–664.10.1083/jcb.200110081Search in Google Scholar

Martinez, O., Antony, C., Pehau-Arnaudet, G., Berger, E.G., Salamero, J., and Goud, B. (1997). GTP-bound forms of Rab6 induce the redistribution of Golgi proteins into the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA94, 1828–1833.10.1073/pnas.94.5.1828Search in Google Scholar

Matanis, T., Akhmanova, A., Wulf, P., Del Nery, E., Weide, T., Stepanova, T., Galjart, N., Grosveld, F., Goud, B., De Zeeuw, C.I., Barnekow, A., and Hoogenraad, C.C. (2002). Bicaudal-D regulates COPI-independent Golgi-ER transport by recruiting the dynein-dynactin motor complex. Nature Cell Biol.12, 986–992.10.1038/ncb891Search in Google Scholar

McConlogue, L., Castellano, F., deWit, C., Schenk, D., and Maltese, W.A. (1996). Differential effects of a Rab6 mutant on secretory versus amyloidogenic processing of Alzheimer's beta-amyloid precursor protein. J. Biol. Chem.271, 1343–1348.10.1074/jbc.271.3.1343Search in Google Scholar

McLoughlin, D.M. and Miller, C.C. (1996). The intracellular cytoplasmic domain of the Alzheimer′s disease amyloid precursor protein interacts with phosphotyrosine-binding domain proteins in the yeast two-hybrid system. FEBS Lett.397, 197–200.10.1016/S0014-5793(96)01128-3Search in Google Scholar

Monier, S., Jollivet, F., Janoueix-Lerosey, I., Johannes, L., and Goud, B. (2002). Characterization of novel Rab6-interacting proteins involved in endosome-to-TGN transport. Traffic3, 289–297.10.1034/j.1600-0854.2002.030406.xSearch in Google Scholar

Okamoto, M. and Südhof, T.C. (1997). Mints, Munc18-interacting proteins in synaptic vesicle exocytosis. J. Biol. Chem.272, 31459–31464.10.1074/jbc.272.50.31459Search in Google Scholar

Okamoto, M. and Südhof, T.C. (1998). Mint 3: a ubiquitous mint isoform that does not bind to munc18-1 or -2. Eur. J. Cell Biol.77, 161–165.10.1016/S0171-9335(98)80103-9Search in Google Scholar

Okamoto, M., Nakajima, Y., Matsuyama, T., and Sugita, M. (2001). Amyloid precursor protein associates independently and collaboratively with PTB and PDZ domains of mint on vesicles and at cell membrane. Neuroscience104, 653–665.10.1016/S0306-4522(01)00124-5Search in Google Scholar

Opdam, F.J., Echard, A., Croes, H.J., van den Hurk, J.A,, van de Vorstenbosch, R.A., Ginsel, L.A., Goud, B., and Fransen, J.A. (2000). The small GTPase Rab6B, a novel Rab6 subfamily member, is cell-type specifically expressed and localised to the Golgi apparatus. J. Cell Sci.113, 2725–2735.10.1242/jcs.113.15.2725Search in Google Scholar

Scheper, W., Zwaart, R., and Baas, F. (2004). Rab6 membrane association is dependent of Presenilin 1 and cellular phosphorylation events. Mol. Brain Res.122, 17–23.10.1016/j.molbrainres.2003.11.013Search in Google Scholar

Schiedel, A.C., Barnekow, A., and Mayer, T. (1995). Nucleotide induced conformation determines posttranslational isoprenylation of the ras related Rab6 protein in insect cells. FEBS Lett.376, 113–119.10.1016/0014-5793(95)01258-0Search in Google Scholar

Selkoe, D.J. (2001). Alzheimer's disease: genes, proteins, and therapy. Physiol. Rev.81, 741–766.10.1152/physrev.2001.81.2.741Search in Google Scholar

Setou, M., Nakagawa, T., Seog, D.H., and Hirokawa, N. (2000). Kinesin superfamily motor protein KIF17 and mLin-10 in NMDA receptor-containing vesicle transport. Science288, 1796–1802.10.1126/science.288.5472.1796Search in Google Scholar

Tanahashi, H. and Tabira, T. (1999). X11L2, a new member of the X11 protein family, interacts with Alzheimer's beta-amyloid precursor protein. Biochem. Biophys. Res. Commun.255, 663–667.10.1006/bbrc.1999.0265Search in Google Scholar

Weide, T., Köster, M., and Barnekow, A. (1999). Inactive and active mutants of rab1b are not tightly integrated into target membranes. Int. J. Oncol.4, 727–736.10.3892/ijo.15.4.727Search in Google Scholar

Weide, T., Bayer, M., Köster, M., Siebrasse, J.P., Peters, R., and Barnekow, A. (2001). The Golgi matrix protein GM130: a specific interacting partner of the small GTPase Rab1b. EMBO Rep.4, 336–341.10.1093/embo-reports/kve065Search in Google Scholar

Weide, T., Teuber, J., Bayer, M., and Barnekow, A. (2003). MICAL-1 isoforms, novel Rab1 interacting proteins. Biochem. Biophys. Res. Commun.306, 79–86.10.1016/S0006-291X(03)00918-5Search in Google Scholar

White, J., Johannes, L., Mallard, F., Girod, A., Grill, S., Reinsch, S., Keller, P., Tzschaschel, B., Echard, A., Goud, B., and Stelzer, E.H. (1999). Rab6 coordinates a novel Golgi to ER retrograde transport pathway in live cells. J. Cell Biol.147, 743–759.10.1083/jcb.147.4.743Search in Google Scholar PubMed PubMed Central

Young, J., Stauber, T., Del Nery, E., Vernos, I., Pepperkok, R., and Nilsson, T. (2005). Regulation of microtubule-dependent recycling at the trans-Golgi network by Rab6A and Rab6A′. Mol. Biol. Cell16, 162–177.10.1091/mbc.e04-03-0260Search in Google Scholar PubMed PubMed Central

Published Online: 2005-08-08
Published in Print: 2005-07-01

©2005 by Walter de Gruyter Berlin New York

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/BC.2005.078/html
Scroll to top button