Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter Open Access October 19, 2015

Contaminant transfer and hydrodispersiveparameters in basaltic lava flows: artificial tracertest and implications for long-term management

  • G. Bertrand , H. Celle-Jeanton , F. Huneau , A. Baillieux , G. Mauri , V. Lavastre , G. Undereiner , L. Girolami and J.S. Moquet
From the journal Open Geosciences

Abstract

The aim of this paper is to evaluate the vulnerabilityafter point source contamination and characterizewater circulations in volcanic flows located in theArgnat basin volcanic system (Chaîne des Puys, FrenchMassif Central) using a tracer test performed by injectinga iodide solution. The analysis of breakthrough curves allowedthe hydrodispersive characteristics of the massivelava flows to be determined. Large Peclet numbers indicateda dominant advective transport. The multimodal featureof breakthrough curves combined with high valuesof mean velocity and low longitudinal dispersion coefficientsindicated thatwater flows in an environment analogousto a fissure system, and only slightly interacts with alow porosity matrix (ne < 1%). Combining this informationwith lava flow stratigraphy provided by several drillingsallowed a conceptual scheme of potential contaminant behaviourto be designed. Although lava flows are vulnerableto point source pollution due to the rapid transfer of waterwithin fractures, the saturated scoriaceous layers locatedbetween massive rocks should suffice to strongly bufferthe transit of pollution through dilution and longer transittimes. This was consistent with the low recovery rate ofthe presented tracer test.

References

[1] Stieljes L., Hydrogéologie de l’îlevolcaniqueocéanique de Mayotte(archipel des Comores, océanIndien occidental) [Hydrogeologyof the Mayotte volcanic island (Comores´ archipelgo, occidentalIndian ocean], Hydrogeol. 1988, 2, 135–152Search in Google Scholar

[2] Violette S., Ledoux E., Goblet P., Carbonnel J.P., Hydrologic andthermalmodelling of an active volcano: the Piton de la Fournaise,La Réunion Island, J. Hydrol. 1997, 191, 37–6310.1016/S0022-1694(96)03071-5Search in Google Scholar

[3] Kulkarni H., Deolankar S.B., Lalwani A., Hydrogeological frameworkof the Deccan basalt groundwater systems, west-centralIndia, Hydrogeological Journal 2000, 8, 368–378.10.1007/s100400000079Search in Google Scholar

[4] Cruz J.V., Amaral C.S., Major ion chemistry of groundwaterfrom perched-water bodies of the Azores (Portugal) volcanicarchipelago, Applied Geochemistry 2004, 19, 445–45910.1016/S0883-2927(03)00135-5Search in Google Scholar

[5] Dafny E., Burg A., Gvirtzman H., Deduction of groundwater flowregime in a basaltic aquifer using geochemical and isotopicdata: The Golan Heights, Israel case study, Journal of Hydrology2006, 330, 506–52410.1016/j.jhydrol.2006.04.002Search in Google Scholar

[6] Carrillo-Rivera J.J., Varsányi I., Kovács L., Cardona A., Tracinggroundwater flow systems with hydrogeochemistry in contrastinggeological environments, Water, Air, and Soil Pollution2007, 184, 77–10310.1007/s11270-007-9400-6Search in Google Scholar

[7] Demlie M., Wohnlich S., Ayenew T., Major ion hydrochemistryand environmental isotope signatures as a tool in assessinggroundwater occurrence and its dynamics in a fractured volcanicaquifer system located within a heavily urbanized catchment,central Ethiopia, Journal of Hydrology 2008, 353, 175–18810.1016/j.jhydrol.2008.02.009Search in Google Scholar

[8] D’Ozouville N., Auken E., Sorensen K., Violette S., DeMarsily G.,Deffontaines B., et al.,Extensive perched aquifer and structuralimplications revealed by 3D resistivity mapping in a Galapagosvolcano, Earth and Planetary Science Letters 2008, 269, 518–52210.1016/j.epsl.2008.03.011Search in Google Scholar

[9] Bertrand G., Celle-Jeanton H., Huneau F., Loock S., Rénac C.,Identification of different groundwater flowpaths within volcanicaquifers using natural tracers: Influence of lava flows morphology,(Argnat basin, Chaîne des Puys, France), Journal of Hydrology2010, 391(3–4), 223–23410.1016/j.jhydrol.2010.07.021Search in Google Scholar

[10] Charlier J.B., Lachassagne P., Ladouche B., Cattan P., MoussaR., Voltz M., Structure and hydrogeological functioning of aninsular tropical humid andesitic volcanic watershed: A multidisciplinaryexperimental approach, Journal of Hydrology 2011,398, 155–17010.1016/j.jhydrol.2010.10.006Search in Google Scholar

[11] Koh D.C., Ha K., Lee K.S., Yoon Y.Y., Ko K.S., Flow paths and mixingproperties of groundwater using hydrogeochemistry andenvironmental tracers in the southwestern area of Jeju volcanicisland, Journal of Hydrology 2012, 432–433, 61–7410.1016/j.jhydrol.2012.02.030Search in Google Scholar

[12] Lachassagne P., Aunay B., Frissant N., Guilbert M., Malard A.,High-resolution conceptual hydrogeological model of complexbasaltic volcanic islands: aMayotte, Comoros, case study, TerraNova 2014, 26, 307–321.10.1111/ter.12102Search in Google Scholar

[13] Council of the European Community, Directive 2000/60/EU ofthe European Parliament and of the Council of 23 October 2000establishing a framework for Community action in the field ofwater policy, Oflcial Journal of European Communities L327/123.10.2000 http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2000:327:0001:0072:EN:PDF Accessed 24 Oct2013Search in Google Scholar

[14] Kløve B., Ala-aho P., Bertrand G., Boukalova Z., Ertürk A., GoldscheiderN., et al., Groundwater Dependent Ecosystems: Part I –Hydroecological status and trends, Environmental Sciences andPolicies 2011, 14(7), 770–78110.1016/j.envsci.2011.04.002Search in Google Scholar

[15] Kløve B., Ala-aho P., Allan A., Bertrand G., Druzynska E., ErtürkA., et al., Groundwater Dependent Ecosystems: Part II - Ecosystemservices and management in Europe under risk of climatechange and land-use intensification, Environmental Sciencesand Policies 2011, 14(7), 782–79310.1016/j.envsci.2011.04.005Search in Google Scholar

[16] Bertrand G., Goldscheider N., Gobat J.M., Hunkeler D., Review:from multi-scale conceptualization of groundwater-dependentecosystems to a classification system for management purposes,Hydrogeology Journal 2012, 20, 5–2510.1007/s10040-011-0791-5Search in Google Scholar

[17] Bertrand G., Masini J., Goldscheider N., Meeks J., Lavastre V.,Celle-Jeanton H., et al., Determination of spatio-temporal variabilityof tree water uptake using stable isotopes (δ18O; δ2H)in an alluvial system supplied by a high-altitude watershed,Pfyn Forest, Switzerland, Ecohydrology 2014, 7(2), 319–333,DOI: 10.1002/eco.134710.1002/eco.1347Search in Google Scholar

[18] MacDonald G.A., Pahoehoe, a’a and block lava, American Journalof Science 1953, 251, 169–19110.2475/ajs.251.3.169Search in Google Scholar

[19] Loock S., Cinématique, déformation et mise en place des lavesSearch in Google Scholar

[Cinematic, deformation and setting of lava flows], PhD thesis,Université Blaise Pascal Clermont-Ferrand II, France (in French)Search in Google Scholar

[20] Cook P.G., A guide to regional groundwater flowin fractured rockaquifers, CSIRO Australia Ed. 2003.Search in Google Scholar

[21] Wood W.W., Fernandez L.A., Volcanic Rocks. In: BackW.,Rosenhein J.S. and Seaber P.R. (Ed.), The Geology ofNorth America, Volume O–2, Hydrogeology, Geological Societyof America 1988, 353–36510.1130/DNAG-GNA-O2.353Search in Google Scholar

[22] Custodio E., Low permeability volcanics in the Canary Islands(Spain), Proceedings of the 18th Congress of the InternationalHydrogeologist Association 1985, 533–544.Search in Google Scholar

[23] Join J.L., Coudray J., Caractérisation géostructurale des émergenceset typologie des nappes d’altitude en milieu volcaniqueinsulaire (île de la Réunion) Search in Google Scholar

[Geostructural characterization ofoutlets and typology of altitude groundwater systems in insularyvolcanic media], GeodinamicaActa 1993, 6(4), 243–254 (inFrench)Search in Google Scholar

[24] Join J.-L., Folio J.-L., Robineau B., Aquifers and groundwaterwithin active shield volcanoes, Evolution of conceptual modelsin the Piton de la Fournaise volcano, J VolcanolGeothermRes2005, 147, 187–201.10.1016/j.jvolgeores.2005.03.013Search in Google Scholar

[25] Nascimento Prada S., Silva M.O., Cruz J.V., Groundwater behaviourin Madeira, volcanic island (Portugal), Hydrogeology Journal 2005, 13, 800–81210.1007/s10040-005-0448-3Search in Google Scholar

[26] Livet M., Captages d’Argnat et des Grosliers. Avis sur lesmesures de protection. Rapport technique Search in Google Scholar

[Argnat and LesGrosliers catchments. Insights on their protection], Technicalreport, Syndicat Basse Limagne, Maringues, 2001 (in French)Search in Google Scholar

[27] Livet M., D’Arcy A., Dupuy C. Synthèse hydrogéologique del’Auvergne Search in Google Scholar

[Hydrogeologic synthesis of Auvergne], In Roux J.C.,(Ed.), Aquifères et eaux souterraines en France, BRGM/IAH Editions,2006 (in French)Search in Google Scholar

[28] Barbaud J.Y. (1983): Etude chimique et isotopique des aquifèresdu Nord de la Chaîne des Puys, Temps de transit et vulnérabilitédes systèmes de Volvic et d’Argnat Search in Google Scholar

[Chemical and isotopic studyof the northern aquifers of the Chaîne des Puys. Transit time andvulnerability of the Volvic and Argnat systems], PhD, Universitéd’Avignon et des Pays du Vaucluse, 1983 (in French)Search in Google Scholar

[29] Maloszewski P., Zuber A., On the theory of tracer experiments infissured rocks with a porous matrix, Journal of Hydrology 1985,79, 333–35810.1016/0022-1694(85)90064-2Search in Google Scholar

[30] Maloszewski P., Zuber A., Mathematical modelling of tracer behaviourin short-term experiments in fissured rocks, Water ResourceResearch 1990, 26, 1517–152810.1029/WR026i007p01517Search in Google Scholar

[31] Vereecken H., Döring U., Hardelauf H., Jaeckel U., HashagenU., Neuendorf O., Schwarze H., Seidemann R., Analysis of solutetransport in a heterogeneous aquifer: the Krauthausen fieldexperiment, Journal of Contaminant Hydrology 2000, 45, 329–358.10.1016/S0169-7722(00)00107-8Search in Google Scholar

[32] Reimus P.W., Haga M.J., Adams A.I., Callahan T.J., Turin H.J.,Counce D.A., Testing and parameterizing a conceptual solutetransport model in saturated fractured tuff using sorbing andnonsorbing tracers in cross-hole tracer tests, Journal of ContaminantHydrology 2003, 62–63, 613–63610.1016/S0169-7722(02)00185-7Search in Google Scholar

[33] Gelhar L.W., Welty C., Rehfeldt K., A critical review of data onfield-scale dispersion in aquifers, Water Resources Research1992, 28(7), 1955–197410.1029/92WR00607Search in Google Scholar

[34] Reimus P.W., Callahan T.J.,Matrix diffusion rates in fractured volcanicrocks at the Nevada Test Site: Evidence for a dominantinfluence of effective fracture apertures, Water Resources Research2007, 43, W0742110.1029/2006WR005746Search in Google Scholar

[35] Reimus P.W., Haga M.J., Adams A.I., Callahan T.J., Turin H.J.,Counce D.A., Testing and parameterizing a conceptual solutetransport model in saturated fractured tuff using sorbing andnonsorbing tracers in cross-hole tracer tests, J. Contam. Hydrol.2003a, 62–63, 613–626.Search in Google Scholar

[36] Neretnieks I., Diffusion in the rock matrix: an important factorin radionuclide retardation? Journal of Geophysical Research1980, 85, 4379–4397.10.1029/JB085iB08p04379Search in Google Scholar

[37] Grisak G.E., Pickens J.F., Solute transport through fracturedmedia,1. The effect of matrix diffusion.Water Resources Research1980, 16, 719–730.10.1029/WR016i004p00719Search in Google Scholar

[38] Tang D.H., Frind E.O., Sudicky E.A., Contaminant transportinfractured porous media: analytical solution for a single fracture,Water Resources Research 1981, 17, 555–564.10.1029/WR017i003p00555Search in Google Scholar

[39] Perrin J., Pochon A., Jeannin P.Y., Zwahlen F., Vulnerability assessmentin karstic areas: validation by field experiments, EnvironmentalGeology 2004, 46: 237–24510.1007/s00254-004-0986-3Search in Google Scholar

[40] Lauber U., Goldscheider N., Use of artificial and natural tracersto assess groundwater transit-time distribution and flow systemsin a high-alpine karst system (WettersteinMountains, Germany),Hydrogeology Journal 2014, 22: 1807–182410.1007/s10040-014-1173-6Search in Google Scholar

[41] Eddebbarh A.A., Zyvoloski G.A., Robinson B.A., Kwicklis E.M.,Reimus P.W., Arnold B.W., Corbet T., Kuzio S.P., Faunt C., The saturatedzone at Yucca Mountain: an overview of the characterizationand assessment of the saturated zone as a barrier to potentialradionuclide migration, Journal of Contaminant Hydrology2003, 62–63, 477–49310.1016/S0169-7722(02)00154-7Search in Google Scholar

[42] Glangeaud P., La Chaîne des Puys C. Bull. Serv. Geol. map.France XXII (135), 1913, 256 p (in French)Search in Google Scholar

[43] Michel R., Hydrogeologie des formations volcaniques del’Auvergne Search in Google Scholar

[Hydrogeology of the volcanic formations in Auvergne],Bull. Soc. Geol. Fr. 1957, 7, 977–994.Search in Google Scholar

[44] Van der Min J., Etude hydrogéologique des grands captagesd’eau potable dans les coulées de lave des environs deClermont-Ferrand Search in Google Scholar

[Hydrogeologic study of drinking water catchmentsin the lava flows of the Clermont-Ferrand area], PhD, Universitéde Clermont-Ferrand 1945 (in French)Search in Google Scholar

[45] Belkessa R., Hydrogéologie de la Chaîne des Puys Search in Google Scholar

[Hydrogeologyof the Chaîne des Puys], Master thesis, Université deClermont-Ferrand, France, 1977 (in French)Search in Google Scholar

[46] Fournier C., Spontaneous potentials and resistivity surveys appliedto hydrogeology in a volcanic area: case history of theChaîne des Puys (Puy -de-Dôme, France), Geophysical Prospecting1989, 37, 647–66810.1111/j.1365-2478.1989.tb02228.xSearch in Google Scholar

[47] Bouchet C., Hydrogéologie du milieu volcanique, le bassin de laVeyre, analyse et modélisation du bassin versant du lac d’Aydat,étude d’un aquifèrefissurébasaltiqueSearch in Google Scholar

[Volcanic media hydrogeology,the Veyre basin, analysis and modelling of the Aydat lakewatershed, study of a fissured basaltic aquifer], PhD, Universitéd’Avignon et des Pays du Vaucluse, France, 1987 (in French)Search in Google Scholar

[48] Belin J.M., Livet M., Heraud H., Autoroute Périgueux Clermont-Ferrand. Dossier d’étude préliminaire de la Chaîne des PuysSearch in Google Scholar

[Perigueux-Clermont-Ferrand motorway. Preliminary studyfolder of the Chaîne des Puys]. Ministère de l’équipement etdu Logement, CETE Lyon, laboratoire régional de Clermont-Ferrand, 1988 (in French)Search in Google Scholar

[49] Gaubi E.B., Etude hydrogéologique de l’extrémité aval dubassin d’Argnat (Chaîne des Puys,Massif Central Français). Projetde l’autoroutePerigueux-Clermont-Ferrand Search in Google Scholar

[Hydrogeologicstudy of the downstream part of the Argnat basin (Chaîne desPuys, French Massif Central). Perigueux-Clermont-Ferrand motorwayproject], Master thesis in Hydrogeology, Université deFranche-Comté, France, 1990 (In French)Search in Google Scholar

[50] Joux M., Structure et fonctionnement hydrogéologique du systèmeaquifère volcanique des eaux minerales de Volvic (Chaînedes Puys, Massif Central Français) Search in Google Scholar

[Structure and hydrogeologicfunctiuningof the Volvic mineral waters volcanic aquifer system(Chaîne des Puys, French Massif Central], PhD, Univesitéd’Avignon et des Pays du Vaucluse, France, 2002 (In French)Search in Google Scholar

[51] Boivin P., Besson J.C., Briot D., Camus G., De Goër D., Herve A.,Gourgaud A., Labazuy P., De Larouzière F.D., Livet M., Mergoil J.,Miallier D., Morel J.M., Vernet G., Vincent P.M., Volcanologie dela Chaîne des Puys, Massif Central Français Search in Google Scholar

[Volcanology of theChaîne des Puys, French Massif Central], 4me édition, Editionsdu parc naturel régional des volcans d’Auvergne, 2004Search in Google Scholar

[52] Josnin J.Y., Livet M., Besson J.C., Characterizing unsaturatedflow from packed scoriated lapilli: Application to Stromboliancone hydrodynamic behaviour, Journal of Hydrology 2007, 335,225–23910.1016/j.jhydrol.2006.11.013Search in Google Scholar

[53] Bertrand G., Celle-Jeanton H., Loock S., Huneau F., LavastreV., Contribution of δ13CCITD and PCO2eq measurements to the understanding of groundwater mineralization and carbon patternsin volcanic aquifers. Application to Argnat Basin (MassifCentral), Aquatic Geochemistry 2013, 19(2), 147–171, DOI:10.1007/s10498-012-9185-010.1007/s10498-012-9185-0Search in Google Scholar

[54] Aubignat A., Le gisement hydrominéral de Volvic en AuvergneSearch in Google Scholar

[The Volvic hydromineral spring in Auvergne], Revue des sciencesnaturelles d’Auvergne 1973, 39, 40–68Search in Google Scholar

[55] Bertrand G., De la pluie à l’eau souterraine. Apport du traçagenaturel (ions majeurs, isotopes) à l’étude du fonctionnementdes aquifères volcaniques (Bassin d’Argnat, Chaîne des Puys,France) Search in Google Scholar

[Fromrain to groundwater. Contribution of naturaltracer tests (major ions, isotopes) for the study of volcanicaquifers (Bassind’Argnat, Chaîne des Puys, France)], PhDthesis, Université Blaise Pascal- Clermont-Ferrand II, France,2009 (In French) http://tel.archives-ouvertes.fr/index.php?halsid=n0lf5ikv2986kmu11j1e39pr47&view_this_doc=tel-00556910&version=1 Accessed 19 Feb 2015Search in Google Scholar

[56] Fiorillo F., Esposito L., Guadagno F.M., Analyses and forecast ofwater resources in an ultra-centenarian spring discharge seriesfrom Serino (Southern Italy), Journal of Hydrology 2007, 336,125–13810.1016/j.jhydrol.2006.12.016Search in Google Scholar

[57] Lorenzo-Lacruz J., Vicente-Serrano S.M., López-Moreno J.I.,Morán-Tejeda E., Zabalza J., Recent trends in Iberian streamflows (1945–2005), Journal of Hydrology 2012, 414–415, 463–47510.1016/j.jhydrol.2011.11.023Search in Google Scholar

[58] Molinari J., Peaudecerf P., Essais conjoints au laboratoire etsur le terrain en vue d’une approche simplifiée de la prévisiondes propagations de substances nuisibles dans les aquifèresréels Search in Google Scholar

[Combined laboratory and field test to design a simplifiedapproach of chemical propagation forecast within realaquifers], Symposium on Hydrodynamic diffusion and dispersionin porous media, Pavie, Avril 1977, A.I.R.H. Comité milieuxporeux, 1977, 89–102Search in Google Scholar

[59] Chambers Meigs L., Bahr J.M., Tracer test evaluation of groundwater- surface water interactions. Proceedings of the YokohamaSymposium Tracers in Hydrology, IAHS Publ. 1993, 215,235–240Search in Google Scholar

[60] Bowman R.S., Evaluation of Some New Tracers for Soil WaterStudies. Soil Sci. Soc. Am. J. 1984, 48(5), 987–99310.2136/sssaj1984.03615995004800050007xSearch in Google Scholar

[61] Bradbury M.H., Green A., Measurement of important parametersdetermining aqueous diffusion rates through crystallinerock matrices, Journal of Hydrology 1985, 82, 39–5510.1016/0022-1694(85)90045-9Search in Google Scholar

[62] HACH, Electrochemical products for analysis,available via http://www.meditecna.com/pdfs/sensionfamilyofelectrochemcatalog.pdfAccessed 07 Oct 2014Search in Google Scholar

[63] Bear J., Dynamics of fluids in porous media, American ElsevierPublishing Comp. Ed., New York-London-Amsterdam, 1972Search in Google Scholar

[64] Kreft A., Zuber A., On the physical meaning of the dispersionequation and its solution for different initial boundary conditions,Chem. Eng. Sci. 1978, 33, 1471–148010.1016/0009-2509(78)85196-3Search in Google Scholar

[65] Maloszewski P., Benischke R., Harum T., Zojer H., Estimationof solute transport parameters in heterogeneous groundwatersystems of a karstic aquifer using artificial tracer experiments,Water Down Under, 1994, 94, 105–111Search in Google Scholar

[66] Witthüser K., Reichert B., Hötzl. Contaminant transport in fracturedchalk: Laboratory and field experiments, Ground Water,2003, 41(6), 806–81510.1111/j.1745-6584.2003.tb02421.xSearch in Google Scholar PubMed

[67] Novakowski K.S., Evans G.V., Lever D.A., Raven K.G., A field exampleof measuring hydrodynamic dispersion in a single fracture,Water Resource Research 1985, 21(8), 1165–117410.1029/WR021i008p01165Search in Google Scholar

[68] Banton O., Bangoy L.M., Hydrogéologie, Multiscience environnementaledes eaux souterraines Search in Google Scholar

[Hydrogeology, environmentalmultiscience of groundwaters], 1997, Presses de l’Universitédu Quebec, 460 p (In French)Search in Google Scholar

[69] Newman J., Electrochemical Systems, 1973, Prentice-Hall, EnglewoodCliffs, New JerseySearch in Google Scholar

[70] Himmelsbach T., Hötzl H.,Maloszewski P., Solute transport processin a highly permeable fault zone of Lindau fractured rocktest site (Germany), Groundwater, 1998, 36(5), 792–80010.1111/j.1745-6584.1998.tb02197.xSearch in Google Scholar

[71] Cruz J.V., Ensaio sobre a Agua subterrânea nos Açores. Historia,ocorrencia e qualidade. Secretaria Regional do AmbienteSearch in Google Scholar

[Insights about groundwater in Azores. History, occurence andquality]. Direcçao Regional do Ordenamento do Territorio e dosRecursos Hidricos (Ed.), 2004, 288 p (in Portuguese)Search in Google Scholar

[72] Chandrashekhar H., Chandrashekharmain S.S., Ganachari S.N.,Groundwater fluctuations and calculation of effective porosityof laterite and effective fissure porosity of basalt of the Karanjabasin, India. Jour. Geol. Soc. India, 1976, 17, 117–122Search in Google Scholar

[73] Deolankar S.B., The Deccan basalts ofMaharashtra, India. Theirpotential as aquifers, Groundwater, 1980, 18(5), 434–43710.1111/j.1745-6584.1980.tb03416.xSearch in Google Scholar

[74] Nemcock M., Moore J.N., Allis R., McCulloch J., Fracture Developmentwithin a Stratovolcano: the Karaha-TelagaBodas GeothermalField, Java Volcanic Arc, Geological Society, London, SpecialPublications, 2004, 231, 223–24210.1144/GSL.SP.2004.231.01.13Search in Google Scholar

[75] Einsiedl F., 2005 Flow system dynamics and water storage of afissured-porous karst aquifer characterized by artificial and environmentaltracers, Journal of Hydrology 2005, 312, 312–32110.1016/j.jhydrol.2005.03.031Search in Google Scholar

[76] Bakalowicz M., Karst groundwater: a challenge for new resources,Hydrogeology Journal 2005, 13, 148–16010.1007/s10040-004-0402-9Search in Google Scholar

[77] Goldscheider N., Drew D., Worthington S., 2007. Introduction.In Goldscheider N., Drew, D. (Ed.), Methods in Karst Hydrogeology.Taylor & Francis, London, 2007, 1–8.Search in Google Scholar

[78] Green T.R., Taniguchi M., Kooi H., Gurdak J.J., Allen D.M., HiscockK.M., Treidel H., Aureli A., Beneath the surface: impacts ofclimate change on groundwater, Journal of Hydrology 2011, 405,532–56010.1016/j.jhydrol.2011.05.002Search in Google Scholar

[79] Kløve B., Bertachi C., Bertrand G., Gurdak J., Kupfersberger H.,Kvoerner J., Muotka T., Preda E., Pulido-Velazquez M., WachniewP., Climate change impacts on groundwater and dependentecosystems. Special issue “Climatic change impact on water:overcoming data and science gaps”. Journal of Hydrology 2014,518 (Part B), 250–266, DOI: http://dx.doi.org/10.1016/j.jhydrol.2013.06.03710.1016/j.jhydrol.2013.06.037Search in Google Scholar

[80] Legout C., Molenat J., Aquilina L., Gascuel-Odoux C., FaucheuxM., Fauvel Y., Bariac, T., Solute transfer in the unsaturated zonegroundwatercontinuum of a headwater catchment, Journal ofHydrology 2007, 332, 427–44110.1016/j.jhydrol.2006.07.017Search in Google Scholar

[81] Haria H., Shand P., Evidence for deep sub-surface flow routingin forested upland Wales: implications for contaminant transportand stream flow generation, Hydrology and Earth SystemSciences 2004, 8 (3), 334–344.10.5194/hess-8-334-2004Search in Google Scholar

[82] Birkholzer J.T., Rubin H., Daniels H., Rouvé G., Contaminant advectionand spreading in a fractured permeable formation: Part1. Parametric Evaluation and Analytical Solution, Journal of Hydrology,1993, 144(1–4), 1–33.10.1016/0022-1694(93)90163-4Search in Google Scholar

Received: 2013-11-20
Accepted: 2015-02-22
Published Online: 2015-10-19

©2015 G. Bertrand et al.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/geo-2015-0037/html
Scroll to top button