Skip to content
BY-NC-ND 4.0 license Open Access Published by De Gruyter Open Access September 2, 2017

Moisture Transport due to Baroclinic Waves: Linear Analysis of Precipitating Quasi-Geostrophic Dynamics

  • Alfredo N. Wetzel EMAIL logo , Leslie M. Smith and Samuel N. Stechmann

Abstract

The effects of rainfall speed, VT, and meridional/vertical moisture gradients on the meridional moisture transport are examined in the context of mid-latitude baroclinic waves. These effects are investigated in an idealized model that can be solved analytically. The model is systematically derived in a precipitating quasi-geostrophic limit, starting from a moist atmospheric model with minimal representation of cloud microphysics. Single-phase dynamics are considered, with a comparison of three cases: unsaturated, saturated with VT = 0, and saturated with VT > 0. The Eady problem for linear baroclinic waves is analyzed, with modifications to incorporate moisture. As a preliminary step, the moist waves are shown to have properties consistent with prior studies, including larger growth rates and smaller spatial scales in the saturated cases in comparison to the classic dry Eady problem. Then, in addition, it is shown that the meridional moisture flux, as a function of height, has a mid-tropospheric maximum in the case of VT = 0, and a maximum in the lower troposphere or at the surface for sufficiently large values of VT. These results for different VT values are discussed in the context of meridional moisture transport in observational data.

MSC 2010: 35B30; 35Q35; 76E20; 76U05; 86A10

References

[1] Robert F. Adler, George J. Huffman, Alfred Chang, Ralph Ferraro, Ping-Ping Xie, John Jaowiak, Bruno Rudolf, Udo Schneider, Scott Curtis, David Bolvin, Arnold Gruber, Joel Susskind, Philip Arkin, and Eric Nelkin. The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J. ydrometeor., 4(6):1147-1167, 2003. 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2.10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2Search in Google Scholar

[2] Peter R. Bannon. Linear development of quasi-geostrophic baroclinic disturbances with condensational heating. J. Atmos. Sci., 43(20):2261-2274, 1986. 10.1175/1520-0469(1986)043<2261:LDOQGB>2.0.CO;2.10.1175/1520-0469(1986)043<2261:LDOQGB>2.0.CO;2Search in Google Scholar

[3] Karine Béranger, Bernard Barnier, Sergei Gulev, and Michel Crépon. Comparing 20 years of precipitation estimates from different sources over the world ocean. Ocean Dyn., 56(2):104-138, 2006. 10.1007/s10236-006-0065-2.10.1007/s10236-006-0065-2Search in Google Scholar

[4] J. G. Charney. The dynamics of long waves in a baroclinic westerly current. J. Meteor., 4(5):135-162, 1947. 10.1175/152- 0469(1947)004<0136:TDOLWI>2.0.CO;2.10.1175/1520-0469(1947)004<0136:TDOLWI>2.0.CO;2Search in Google Scholar

[5] Hylke de Vries, John Methven, Thomas H. A. Frame, and Brian J. Hoskins. Baroclinic waves with parameterized effects of moisture interpreted using rossby wave components. J. Atmos. Sci., 67(9):2766-2784, 2010. 10.1175/2010JAS3410.1.10.1175/2010JAS3410.1Search in Google Scholar

[6] Dale R. Durran and Joseph B. Klemp. On the effects of moisture on the Brunt-Väisälä frequency. J. Atmos. Sci., 39(10): 2152-2158, 1982. 10.1175/1520-0469(1982)039<2152:OTEOMO>2.0.CO;2.10.1175/1520-0469(1982)039<2152:OTEOMO>2.0.CO;2Search in Google Scholar

[7] E. T. Eady. Long waves and cyclone waves. Tellus A, 1(3):33-52, 1949. 10.1111/j.2153-3490.1949.tb01265.x.10.3402/tellusa.v1i3.8507Search in Google Scholar

[8] Kerry A. Emanuel, Maurizio Fantini, and Alan J. Thorpe. Baroclinic instability in an environment of small stability to slantwise moist convection. Part I: Two-dimensional models. J. Atmos. Sci., 44(12):1559-1573, 1987. 10.1175/1520- 0469(1987)044<1559:BIIAEO>2.0.CO;2.Search in Google Scholar

[9] Maurizio Fantini. Nongeostrophic corrections to the eigensolutions of a moist baroclinic instability problem. J. Atmos. Sci., 47(11):1277-1287, 1990. 10.1175/1520-0469(1990)047<1277:NCTTEO>2.0.CO;2.10.1175/1520-0469(1990)047<1277:NCTTEO>2.0.CO;2Search in Google Scholar

[10] Dargan M. W. Frierson, Isaac M. Held, and Pablo Zurita-Gotor. A gray-radiation aquaplanet moist GCM. Part I: Static stability and eddy scale. J. Atmos. Sci., 63(10):2548-2566, 2006. 10.1175/JAS3753.1.Search in Google Scholar

[11] Robert Gall. The effects of released latent heat in growing baroclinic waves. J. Atmos. Sci., 33(9):1686-1701, 1976. 10.1175/1520-0469(1976)033<1686:TEORLH>2.0.CO;2.10.1175/1520-0469(1976)033<1686:TEORLH>2.0.CO;2Search in Google Scholar

[12] Balasubramanian Govindasamy and S. T. Garner. The equilibration of short baroclinic waves. J. Atmos. Sci., 54(24):2850-2871, 1997. 10.1175/1520-0469(1997)054<2850:TEOSBW>2.0.CO;2.10.1175/1520-0469(1997)054<2850:TEOSBW>2.0.CO;2Search in Google Scholar

[13] Gerardo Hernández-Dueñas, Andrew J. Majda, Leslie M. Smith, and Samuel N. Stechmann. Minimal models for precipitating turbulent convection. J. Fluid Mech., 717:576-611, 2 2013. 10.1017/jfm.2012.597.10.1017/jfm.2012.597Search in Google Scholar

[14] Gerardo Hernández-Dueñas, Leslie M. Smith, and Samuel N. Stechmann. Stability and instability criteria for idealized precipitating hydrodynamics. J. Atmos. Sci., 72(6):2379-2393, 2015. 10.1175/JAS-D-14-0317.1.10.1175/JAS-D-14-0317.1Search in Google Scholar

[15] James R. Holton and Gregory J. Hakim. An Introduction to Dynamic Meteorology. Academic Press, Boston, MA, 2013.10.1016/B978-0-12-384866-6.00001-5Search in Google Scholar

[16] Frédéric Laliberté, Tiffany Shaw, and Olivier Pauluis. Moist recirculation and water vapor transport on dry isentropes. J. Atmos. Sci., 69(3):875-890, 2012. 10.1175/JAS-D-11-0124.1.10.1175/JAS-D-11-0124.1Search in Google Scholar

[17] Julien Lambaerts, Guillaume Lapeyre, and Vladimir Zeitlin. Moist versus dry baroclinic instability in a simpliffed two-layer atmospheric modelwith condensation and latent heat release. J. Atmos. Sci., 69(4):1405-1426, 2012. 10.1175/JAS-D-11-0205.1.10.1175/JAS-D-11-0205.1Search in Google Scholar

[18] G. Lapeyre and I. M. Held. The role of moisture in the dynamics and energetics of turbulent baroclinic eddies. J. Atmos. Sci., 61(14):1693-1710, 2004. 10.1175/1520-0469(2004)061<1693:TROMIT>2.0.CO;2.10.1175/1520-0469(2004)061<1693:TROMIT>2.0.CO;2Search in Google Scholar

[19] Mankin Mak. On moist quasi-geostrophic baroclinic instability. J. Atmos. Sci., 39(9):2028-2037, 1982. 10.1175/1520- 0469(1982)039<2028:OMQGBI>2.0.CO;2.10.1175/1520-0469(1982)039<2028:OMQGBI>2.0.CO;2Search in Google Scholar

[20] John Marshall and R. Alan Plumb. Atmosphere, Ocean, and Climate Dynamics: An Introductory Text. Academic Press, Boston, MA, 2007.Search in Google Scholar

[21] Joy M. Monteiro and Jai Sukhatme. Quasi-geostrophic dynamics in the presence of moisture gradients. Quart. J. Roy. Meteor. Soc., 142(694):187-195, 2016. 10.1002/qj.2644.10.1002/qj.2644Search in Google Scholar

[22] Paul A. O’Gorman. The effective static stability experienced by eddies in a moist atmosphere. J. Atmos. Sci., 68(1):75-90, 2011. 10.1175/2010JAS3537.1.10.1175/2010JAS3537.1Search in Google Scholar

[23] Olivier Pauluis, Arnaud Czaja, and Robert Korty. The global atmospheric circulation on moist isentropes. Science, 321(5892): 1075-1078, 2008. 10.1126/science.1159649.Search in Google Scholar

[24] Joseph Pedlosky. Geophysical Fluid Dynamics. Springer-Verlag, New York, NY, 1987.10.1007/978-1-4612-4650-3Search in Google Scholar

[25] J. P. Peixoto and A. H. Oort. Physics of Climate. American Institute of Physics, New York, NY, 1992.10.1063/1.2809772Search in Google Scholar

[26] R. Richiardone and F. Giusti. On the stability criterion in a saturated atmosphere. J. Atmos. Sci., 58(14):2013-2017, 2001. 10.1175/1520-0469(2001)058<2013:OTSCIA>2.0.CO;2.10.1175/1520-0469(2001)058<2013:OTSCIA>2.0.CO;2Search in Google Scholar

[27] Leslie M. Smith and Samuel N. Stechmann. Precipitating quasi-geostrophic equations and potential vorticity inversion with phase changes. 2017. submitted.10.1175/JAS-D-17-0023.1Search in Google Scholar

[28] Kevin E. Trenberth and Julie M. Caron. Estimates of meridional atmosphere and ocean heat transports. J. Climate, 14(16): 3433-3443, 2001. 10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2.10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2Search in Google Scholar

[29] Kevin E. Trenberth and David P. Stepaniak. Covariability of components of poleward atmospheric energy transports on seasonal and interannual timescales. J. Climate, 16(22):3691-3705, 2003. 10.1175/1520-0442(2003)016<3691:COCOPA>2.0.CO;2.10.1175/1520-0442(2003)016<3691:COCOPA>2.0.CO;2Search in Google Scholar

[30] G. K. Vallis. Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, Cambridge, U.K., 2006.10.1017/CBO9780511790447Search in Google Scholar

[31] Bin Wang and Albert Barcilon. Moist stability of a baroclinic zonal flow with conditionally unstable stratiffcation. J. Atmos. Sci., 43(7):705-719, 1986. 10.1175/1520-0469(1986)043<0705:MSOABZ>2.0.CO;2.10.1175/1520-0469(1986)043<0705:MSOABZ>2.0.CO;2Search in Google Scholar

Received: 2017-2-23
Accepted: 2017-7-26
Published Online: 2017-9-2
Published in Print: 2017-8-28

© 2017

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

Downloaded on 29.3.2024 from https://www.degruyter.com/document/doi/10.1515/mcwf-2017-0002/html
Scroll to top button