Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter January 26, 2011

Continuous production of citric acid from raw glycerol by Yarrowia lipolytica in cell recycle cultivation

  • Anita Rywińska EMAIL logo and Waldemar Rymowicz
From the journal Chemical Papers

Abstract

The kinetics of continuous citric acid (CA) fermentation, using two acetate-negative mutants of Yarrowia lipolytica (Wratislavia AWG7 and Wratislavia 1.31) with long-term cell recycle, were investigated at a dilution rate (D) of 0.011 h−1. The capacity of the mutants to produce CA from raw glycerol under steady state conditions was compared. The process involving the Wratislavia AWG7 strain showed that this strain was a better producer of CA than the Wratislavia 1.31 strain in this regime. In steady state, the concentration of CA in the effluent was constant and amounted to 116 g dm−3. This corresponded to a volumetric CA production rate of 1.3 g dm−3 h−1. A stable high-level production of CA was maintained for over 400 h of operation. The Wratislavia AWG7 strain employed remained highly stable throughout the experiment and demonstrated good viability, high genetic and phenotypic stability over the long-term continuous fermentation process.

[1] Anastassiadis, S., Morgunov, I. G., Kamzolova, S. V., & Finogenova, T. V. (2008). Citric acid production patent review. Recent Patents on Biotechnology, 2, 107–123. DOI: 10.2174/187220808784619757. http://dx.doi.org/10.2174/18722080878461975710.2174/187220808784619757Search in Google Scholar

[2] Anastassiadis, S., Wandrey, C., & Rhem, H.-J. (2005). Continuous citric acid fermentation by Candida oleophila under nitrogen limitation at constant C/N ratio. World Journal of Microbiology & Biotechnology, 21, 695–705. DOI: 10.1007/s11274-004-3850-4. http://dx.doi.org/10.1007/s11274-004-3850-410.1007/s11274-004-3850-4Search in Google Scholar

[3] Arzumanov, T. E., Shishkanova, N. V., & Finogenova, T. V. (2000). Biosynthesis of citric acid by Yarrowia lipolytica repeat-batch culture on ethanol. Applied Microbiology and Biotechnolology, 53, 525–529. DOI: 10.1007/s002530051651. http://dx.doi.org/10.1007/s00253005165110.1007/s002530051651Search in Google Scholar

[4] Brown, B. D., Hsu, K. H., Hammond, E. G., & Glatz, B. A. (1989). A relationship between growth and lipid accumulation in Candida curvata D. Journal of Fermentation and Bioengineering, 68, 344–352. DOI: 10.1016/0922-338X(89)90010-X. http://dx.doi.org/10.1016/0922-338X(89)90010-X10.1016/0922-338X(89)90010-XSearch in Google Scholar

[5] Bubbico, R., Lo Presti, S., Bravi, M., Moresi, M., & Spinosi, M. (1996). Repeated batch citrate production by Yarrowia lipolytica using yeast recycling by cross-flow microfiltration. Agro Food Industry Hi-Tech, 7, 35–38. Search in Google Scholar

[6] Charcosset, C. (2006). Membrane processes in biotechnology: An overview. Biotechnology Advances, 24, 482–492. DOI: 10.1016/j.biotechadv.2006.03.002. http://dx.doi.org/10.1016/j.biotechadv.2006.03.00210.1016/j.biotechadv.2006.03.002Search in Google Scholar

[7] Choi, J.-H., Moon, K.-H., Ryu, Y.-W., & Seo, J.-H. (2000). Production of xylitol in cell recycle fermentations of Candida tropicalis. Biotechnology Letters, 22, 1625–1628. DOI: 10.1023/A:1005693427389. http://dx.doi.org/10.1023/A:100569342738910.1023/A:1005693427389Search in Google Scholar

[8] Crolla, A., & Kennedy, K. J. (2004). Fed-batch production of citric acid by Candida lipolytica grown on n-parrafins. Journal of Biotechnology, 110, 73–84. DOI: 10.1016/j.jbiotec.2004.01.007. http://dx.doi.org/10.1016/j.jbiotec.2004.01.00710.1016/j.jbiotec.2004.01.007Search in Google Scholar

[9] Dhillon, G. S., Brar, S. K., Verma, M., & Tyagi, R. D. (2010). Recent advances in citric acid bio-production and recovery. Food and Bioprocess Technology, Online First, 13 July 2010. DOI: 10.1007/s11947-010-0399-0. 10.1007/s11947-010-0399-0Search in Google Scholar

[10] Enzminger, J. D., & Asenjo, J. A. (1986). Use of cell recycle in the aerobic fermentative production of citric acid by yeast. Biotechnology Letters, 8, 7–12. DOI: 10.1007/BF01044392. http://dx.doi.org/10.1007/BF0104439210.1007/BF01044392Search in Google Scholar

[11] Escobar, J. M, Rane, K. D., & Cheryan, M. (2001). Ethanol production in a membrane bioreactor. Applied Biochemistry and Biotechnology, 91–93, 283–296. DOI: 10.1385/ABAB:91-93:1-9:283. http://dx.doi.org/10.1385/ABAB:91-93:1-9:28310.1385/ABAB:91-93:1-9:283Search in Google Scholar

[12] Evans, C. T., & Ratledge, C. (1983). Biochemical activities during lipid accumulation in Candida curvata. Lipids, 18, 630–635. DOI: 10.1007/BF02534674. http://dx.doi.org/10.1007/BF0253467410.1007/BF02534674Search in Google Scholar

[13] Finogenova, T. V., Morgunov, I. G., Kamzolova, S. V., & Chernyavskaya, O. G. (2005). Organic acid production by the yeast Yarrowia lipolytica: A review of prospects. Applied Biochemistry and Microbiology, 41, 418–425. DOI: 10.1007/s10438-005-0076-7. http://dx.doi.org/10.1007/s10438-005-0076-710.1007/s10438-005-0076-7Search in Google Scholar

[14] Goldberg, D. M, & Ellis, G. (1983). Isocitrate dehydrogenase. In H. U. Bergmeyer (Ed.), Methods of enzymatic analysis (Vol. 3, pp. 183–190). Weinheim, Germany: Verlag Chemie. Search in Google Scholar

[15] Kim, E. K., Ambriano, J. R., & Roberts, R. S. (1987). Vigorous stationary phase fermentation. Biotechnology and Bioengineering, 30, 805–808. DOI: 10.1002/bit.260300617. http://dx.doi.org/10.1002/bit.26030061710.1002/bit.260300617Search in Google Scholar

[16] Michel-Savin, D., Marchal, R., & Vandecasteele, J. P. (1990). Butyric fermentation: metabolic behaviour and production performance of Clostridium tyrobutyricum in a continuous culture with cell recycle. Applied Microbiology and Biotechnology, 34, 172–177. DOI: 10.1007/BF00166775. http://dx.doi.org/10.1007/BF0016677510.1007/BF00166775Search in Google Scholar

[17] Miyano, K., Ye, K., & Shimizu, K. (2000). Improvement of vitamin B12 fermentation by reducing the inhibitory metabolites by cell recycle system and a mixed culture. Biochemical Engineering Journal, 6, 207–214. DOI: 10.1016/S1369-703X(00)00089-9. http://dx.doi.org/10.1016/S1369-703X(00)00089-910.1016/S1369-703X(00)00089-9Search in Google Scholar

[18] Papanikolaou, S., & Aggelis, G. (2009). Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica. Lipid Technology, 21, 83–87. DOI: 10.1002/lite.200900017. http://dx.doi.org/10.1002/lite.20090001710.1002/lite.200900017Search in Google Scholar

[19] Papanikolaou, S., & Aggelis, G. (2002). Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresource Technology, 82, 43–49. DOI: 10.1016/S0960-8524(01)00149-3. http://dx.doi.org/10.1016/S0960-8524(01)00149-310.1016/S0960-8524(01)00149-3Search in Google Scholar

[20] Papanikolaou, S., Muniglia, L., Chevalot, I., Aggelis, G., & Marc, I. (2002). Yarrowia lipolytica as a potential producer of citric acid from raw glycerol. Journal of Applied Microbiology, 92, 737–744. DOI: 10.1046/j.1365-2672.2002.01577.x. http://dx.doi.org/10.1046/j.1365-2672.2002.01577.x10.1046/j.1365-2672.2002.01577.xSearch in Google Scholar PubMed

[21] Rane, K. D., & Sims, K. A. (1995). Citric acid production by Candida lipolytica Y 1095 in cell recycle and fed-batch fermentors. Biotechnology and Bioengineering, 46, 325–332. DOI: 10.1002/bit.260460405. http://dx.doi.org/10.1002/bit.26046040510.1002/bit.260460405Search in Google Scholar PubMed

[22] Rymowicz, W., Fatykhova, A. R., Kamzolova, S. V., Rywińska, A., & Morgunov, I. G. (2010). Citric acid production from glycerol-containing waste of biodiesel industry by Yarrowia lipolytica in batch, repeated batch, and cell recycle regimes. Applied Microbiology and Biotechnology, 87, 971–979. DOI: 10.1007/s00253-010-2561-z. http://dx.doi.org/10.1007/s00253-010-2561-z10.1007/s00253-010-2561-zSearch in Google Scholar PubMed

[23] Rymowicz, W., Rywińska, A., Żarowska, B., & Juszczyk, P. (2006). Citric acid production from raw glycerol by acetate mutants of Yarrowia lipolytica. Chemical Papers, 60, 391–394. DOI: do]10.2478/s11696-006-0071-3. http://dx.doi.org/10.2478/s11696-006-0071-310.2478/s11696-006-0071-3Search in Google Scholar

[24] Rywińska, A., & Rymowicz, W. (2010). High-yield production of citric acid by Yarrowia lipolytica on glycerol in repeated-batch bioreactors. Journal of Industrial Microbiology & Biotechnology, 37, 431–435. DOI: 10.1007/s10295-009-0687-8. http://dx.doi.org/10.1007/s10295-009-0687-810.1007/s10295-009-0687-8Search in Google Scholar PubMed

[25] Rywińska, A., Rymowicz, W., Żarowska, B., Musiał, I. (2004). Characteristic of physiology state of Yarrowia lipolytica mutants during continuous citric acid production in membrane reactor on glucose syrup (in Polish). Acta Scientiarum Polonorum: Biotechnologia, 3, 85–95. Search in Google Scholar

[26] Rywińska, A., Rymowicz, W., Żarowska, B., & Skrzypiński, A. (2010). Comparison of citric acid production from glycerol and glucose by different strains of Yarrowia lipolytica. World Journal of Microbiology & Biotechnology, 26, 1217–1224. DOI: 10.1007/s11274-009-0291-0. http://dx.doi.org/10.1007/s11274-009-0291-010.1007/s11274-009-0291-0Search in Google Scholar PubMed

[27] Rywińska, A., Rymowicz, W., Żarowska, B., & Wojtatowicz, M. (2009). Biosynthesis of citric acid from glycerol by acetate mutants of Yarrowia lipolytica in fed-batch fermentation. Food Technology and Biotechnology, 47, 1–6. Search in Google Scholar

[28] Rywińska, A., Wojtatowicz, M., Żarowska, B., & Rymowicz, W. (2008). Biosynthesis of citric acid by yeast Yarrowia lipolytica A-101-1.31 under repeated batch cultivation. Electronic Journal of Polish Agricultural Universities, 11(1), article No. 07. Search in Google Scholar

[29] Zeng, A.-P., Biebl, H., & Deckwer, W.-D. (1991). Production of 2,3-butanediol in a membrane bioreactor with cell recycle. Applied Microbiology and Biotechnology, 34, 463–468. DOI: 10.1007/BF00180571. http://dx.doi.org/10.1007/BF0018057110.1007/BF00180571Search in Google Scholar

Published Online: 2011-1-26
Published in Print: 2011-4-1

© 2010 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11696-010-0093-8/html
Scroll to top button