Skip to content
BY-NC-ND 3.0 license Open Access Published by De Gruyter January 5, 2010

Haplotyping barley bmy1 using the SNaPshot assay

  • Jaroslava Ovesna EMAIL logo , Kamila Strymplova Stastna , Katerina Vaculova and Jarmila Milotova
From the journal Biologia

Abstract

The allelic status at bmy1, which encodes the enzyme β-amylase 1 in the barley grain, has an important influence over a cultivar’s malting quality. Changes in the malting process have been responsible for the need to improve the thermostability of this enzyme. We have compared a published bmy1 haplotyping assay based on TDI-FRET (template-directed dye-terminator incorporation fluorescence resonance energy transfer) with a SNaPshot protocol by jointly analysing a set of 21 cultivars of known haplotype. The two methods gave the same result, but the SNaPshot assay was easier to interpret. The SNaPshot assay was therefore used to haplotype the Czech malting barley core collection with respect to bmy1. The old Czech cultivar Kasticky was the only entry identified as carrying the high thermostability haplotype, with the remainder carrying either the intermediate or the low thermostability haplotypes. Older materials were the most variable in terms of bmy1 haplotype, but the majority carried the intermediate type. Most of the descendants of cv. Diamant carried the low thermostability haplotype. The most recently released cultivars recommended for the brewing of Czech beer tend to carry the intermediate allele.

[1] Babol-Pokora K. & Berent J. 2008. SNP-minisequencing as an excellent tool for analysing degraded DNA recovered from archival tissues. Acta Biochim. Pol. 55: 815–819. 10.18388/abp.2008_3045Search in Google Scholar

[2] Benson E.E. 2008. Cryopreservation of phytodiversity: a critical appraisal of theory & practice. Crit. Rev. Plant Sci. 27: 141–219. http://dx.doi.org/10.1080/0735268080220203410.1080/07352680802202034Search in Google Scholar

[3] Clancy J.A., Han F. & Ullrich S.E. 2003. Comparative mapping of β-amylase activity QTLs among three barley crosses. Crop Sci. 43: 1043–1052. 10.2135/cropsci2003.1043Search in Google Scholar

[4] Daussant J., Sadowski J., Rorat T., Mayer C. & Lauriere C. 1991. Independent regulatory aspects and post-translational modifications of two β-amylases of rye. Plant Physiol. 96: 84–90. http://dx.doi.org/10.1104/pp.96.1.8410.1104/pp.96.1.84Search in Google Scholar

[5] Daussant J., Sadowski J., & Ziegler P. 1994. Cereal β-amylases: diversity of the β-amylase isozyme status within cereals. J. Plant Physiol. 143: 585–590. 10.1016/S0176-1617(11)81142-9Search in Google Scholar

[6] Eglinton J.K., Langridge P. & Evans D.E. 1998. Thermostability variation in alleles of barley β-amylase. J. Cereal Sci. 28:301–309. http://dx.doi.org/10.1016/S0733-5210(98)90010-810.1016/S0733-5210(98)90010-8Search in Google Scholar

[7] Erkkila M.J., Leah R., Ahokas H. & Cameron-Mills V. 1998. Allele-dependent barley grain β-amylase activity. Plant Physiol. 117: 679–685. http://dx.doi.org/10.1104/pp.117.2.67910.1104/pp.117.2.679Search in Google Scholar

[8] Hammer K. & Teklu Y. 2008. Plant genetic resources: selected issues from genetic erosion to genetic engineering. J. Agric. Rural Dev. Trop. Subtrop. 109: 15–50. Search in Google Scholar

[9] Hardie D.G. 1975. Control of carbohydrase formation by gib-berellic acid in barley endosperm. Plant Physiol. Biochem. 14: 1719–1722. 10.1016/0031-9422(75)85281-2Search in Google Scholar

[10] Kaneko T., Kihara M. & Ito K. 2000. Genetic analyses of β-amylase thermostability to develop a DNA marker for malt fermentability improvement in barley, Hordeum vulgare. Plant Breed. 119: 197–201. http://dx.doi.org/10.1046/j.1439-0523.2000.00496.x10.1046/j.1439-0523.2000.00496.xSearch in Google Scholar

[11] Kaneko T., Zhang W.S., Takahashi H., Ito K. & Takeda K. 2001. QTL mapping for enzyme activity and thermostability of β-amylase in barley (Hordeum vulgare L.). Breeding Sci. 51: 99–105. http://dx.doi.org/10.1270/jsbbs.51.9910.1270/jsbbs.51.99Search in Google Scholar

[12] Kihara M., Kaneko T. & Ito K. 1998. Genetic variation of β-amylase thermostability among varieties of barley (Horedum vulgare L.) and β-amylase deficiency. Plant Breed. 118: 425–428. http://dx.doi.org/10.1111/j.1439-0523.1998.tb01967.x10.1111/j.1439-0523.1998.tb01967.xSearch in Google Scholar

[13] Kihara M., Okada Y., Kuroda H., Saeki K., Yoshigi N. & Ito K. 2000. Improvement of β-amylase thermostability in transgenic barley seeds and transgene stability in progeny. Mol. Breed. 6: 511–517. http://dx.doi.org/10.1023/A:102653540757010.1023/A:1026535407570Search in Google Scholar

[14] Kreis M., Williamson M.S., Shewry P.R., Sharp P. & Gale M. 1988. Identification of a second locus encoding β-amylase on chromosome 2 of barley. Genet. Res. 51: 13–16. http://dx.doi.org/10.1017/S001667230002388010.1017/S0016672300023880Search in Google Scholar

[15] Li C.D., Zhang X.Q., Eckstein P.E., Hay D., Rossnagel B.G., Lefol E.B., Harvey B.L., Lance R.C.M. & Scoles G.J. 2002. PCR markers for selekction of the Bmy1 locus that encodes β-amylase in barley grain. In: Proceedings of the 10th Australian Barley Technical Symposium, 16–20 September 2001, Australian Barley Technical Symposium Inc., ISSN 1030-5408. Search in Google Scholar

[16] Ma Y.F., Eglinton J.K., Evans D.E., Logue S.J. & Langridge P. 2000. Removal of the four C-terminal glycine-rich repeats enhances the thermostability and substrate binding affinity of barley β-amylase. Biochemistry 39: 13350–13355. http://dx.doi.org/10.1021/bi000688s10.1021/bi000688sSearch in Google Scholar PubMed

[17] Ma Y.F., Evans D.E., Logue S.J. & Langridge P. 2001. Mutations of barley β-amylase that improve substrate binding affinity and thermostability. Mol. Genet. Genomics 266: 345–352. http://dx.doi.org/10.1007/s00438010056610.1007/s004380100566Search in Google Scholar PubMed

[18] Malysheva L., Ganal M.W. & Roder M.S. 2004. Evaluation of cultivated barley (Hordeum vulgare) germplasm for the presence of thermostable alleles of β-amylase. Plant Breed. 123: 121–131. http://dx.doi.org/10.1046/j.1439-0523.2003.00919.x10.1046/j.1439-0523.2003.00919.xSearch in Google Scholar

[19] Malysheva-Otto L. & Roder M.S. 2006. Haplotype diversity in the endosperm specific β-amylase gene Bmy1 of cultivated barley. Mol. Breed. 18: 143–156. http://dx.doi.org/10.1007/s11032-006-9023-410.1007/s11032-006-9023-4Search in Google Scholar

[20] Ovesna J., Machova Polakova K., Kucera L., Vaculova K. & Milotova J. 2006. Evaluation of Czech spring malting barleys with respect to the β-amylase allele incidence. Plant Breed. 125:236–242. http://dx.doi.org/10.1111/j.1439-0523.2006.01215.x10.1111/j.1439-0523.2006.01215.xSearch in Google Scholar

[21] Paris M., Jones M.G.K. & Eglinton J.K. 2002. Genotyping single nucleotide polymorphisms for selection of barley β-amylase alleles. Plant Mol. Biol. Rep. 20: 149–159. http://dx.doi.org/10.1007/BF0279943010.1007/BF02799430Search in Google Scholar

[22] Pati N., Schowinsky V., Kokanovic O., Magnuson V. & Ghosh S. 2004. A comparison between SNaPshot, pyrosequencing, and biplex invader SNP genotyping methods: accuracy, cost and throughput. J. Biochem. Biophys. Methods 60: 1–12. http://dx.doi.org/10.1016/j.jbbm.2003.11.00510.1016/j.jbbm.2003.11.005Search in Google Scholar PubMed

[23] Polakova K., Laurie D., Vaculova K. & Ovesna J. 2003. Characterization of β-amylase alleles in 79 barley varieties with pyrosequencing. Plant Mol. Biol. Rep. 21: 439–447. http://dx.doi.org/10.1007/BF0277259310.1007/BF02772593Search in Google Scholar

[24] Saghaii-Maroof M.A., Soliman K.M., Jorgensen R.A. & Allard R.W. 1984. Ribosomal DNA spacer-length polymorphism in barley: mendelian inheritance, chromosomal location, and population dynamics. Proc. Natl. Acad. Sci. USA 81: 8014–8018. http://dx.doi.org/10.1073/pnas.81.24.801410.1073/pnas.81.24.8014Search in Google Scholar PubMed PubMed Central

[25] Sjakste T. & Roder M. 2004. Distribution and inheritance of β-amylase alleles in north European barley varieties. Hereditas 141: 39–45. http://dx.doi.org/10.1111/j.1601-5223.2004.01789.x10.1111/j.1601-5223.2004.01789.xSearch in Google Scholar PubMed

[26] Sun Z. & Henson C. 1990. Degradation of native starch granules by barley α-glucosidases. Plant Physiol.94: 320–327. http://dx.doi.org/10.1104/pp.94.1.32010.1104/pp.94.1.320Search in Google Scholar PubMed PubMed Central

[27] Thacker S.P., Ramamurthy V. & Kothari R.M. 1992. Characterisation of barley β-amylase for application in maltose production. Starch-Starke 44: 339–341. http://dx.doi.org/10.1002/star.1992044090610.1002/star.19920440906Search in Google Scholar

[28] Zhang W., Kaneko T., Ishii M. & Takeda K. 2004. Differentiation of β-amylase phenotypes in cultivated barley. Crop Sci 44: 1608–1614. http://dx.doi.org/10.2135/cropsci2004.160810.2135/cropsci2004.1608Search in Google Scholar

[29] Zhang W.S., Li X. & Liu J.B. 2007. Genetic variation of Bmy1 alleles in barley (Hordeum vulgare L.) investigated by CAPS analysis. Theor. Appl. Genet. 114: 1039–1050. http://dx.doi.org/10.1007/s00122-006-0497-610.1007/s00122-006-0497-6Search in Google Scholar PubMed

[30] Ziegler P. 1999. Cereal β-amylases. J. Cereal Sci. 29: 195–204. http://dx.doi.org/10.1006/jcrs.1998.023810.1006/jcrs.1998.0238Search in Google Scholar

Published Online: 2010-1-5
Published in Print: 2010-2-1

© 2009 Slovak Academy of Sciences

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.2478/s11756-009-0218-0/html
Scroll to top button