5. Synthesis and characterization of size-controlled atomically precise gold clusters


In this article, synthetic strategies and characterization methodologies of atomically precise gold clusters have been summarized. The typical and effective synthetic strategies including a systematic “size-focusing” methodology has been developed for attaining atomically precise gold clusters with size control. Another universal synthetic methodology is ligand exchange-induced size/structure transformation (LEIST) based on from one stable size to another. These two methodologies have largely expanded the “universe” of atomically precise gold clusters. Elite of typical synthetic case studies of ligand protected gold clusters are presented. Important characterization techniques of these atomically precise gold clusters also are included. The identification and characterization of gold clusters have been achieved in terms of nuclearity (size), molecular formulation, and geometrical structures by the combination of these techniques. The determination of gold cluster structure based on single crystals is of paramount importance in understanding the relationship of structure-property. The criterion and selection of these typical gold clusters are all “strictly” atomically precise that all have been determined ubiquitously by single crystal diffraction. These related crystallographic data are retrieved from Cambridge Crystallographic Data Centre (CCDC) up to 30th November 2017. Meanwhile, the cutting edge and other important characterization methodologies including electron diffraction (ED), extended X-ray absorption fine structure (EXFAS), and synchrotron sources are briefly reviewed. The new techniques hold the promise of pushing the limits of crystallization of gold clusters. This article is not just an exhaustive and up to date review, generally summarized synthetic strategies, but also a practical guide regarding gold cluster synthesis. We called it a “Cookbook” of ligand protected gold clusters, including synthetic recipes and characterization details.

Purchase chapter
Get instant unlimited access to the chapter.
Log in
Already have access? Please log in.

Log in with your institution