Jump to ContentJump to Main Navigation
Show Summary Details
More options …

at - Automatisierungstechnik

Methoden und Anwendungen der Steuerungs-, Regelungs- und Informationstechnik

[AT - Automation Technology: Methods and Applications of Control, Regulation, and Information Technology
]

Editor-in-Chief: Jumar, Ulrich


IMPACT FACTOR 2018: 0.500

CiteScore 2018: 0.60

SCImago Journal Rank (SJR) 2018: 0.211
Source Normalized Impact per Paper (SNIP) 2018: 0.532

Online
ISSN
2196-677X
See all formats and pricing
More options …
Volume 66, Issue 10

Issues

Using model differencing to reason about observable behavior changes of manufacturing systems

Nutzung von Modelldifferenzen zum Schließen auf beobachtbare Verhaltensänderungen von Fertigungssystemen

Christopher Pietsch / Udo Kelter / Christopher Haubeck
  • Distributed Systems and Information Systems, University of Hamburg, Vogt-Kölln-Straße 30, 22527 Hamburg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Winfried Lamersdorf
  • Distributed Systems and Information Systems, University of Hamburg, Vogt-Kölln-Straße 30, 22527 Hamburg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Abhishek Chakraborty / Alexander Fay
  • Corresponding author
  • Automation Technology Institute, Helmut-Schmidt-University, Holstenhofweg 85, 22043 Hamburg, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2018-10-17 | DOI: https://doi.org/10.1515/auto-2018-0046

Abstract

Understanding changes in a manufacturing system is of utmost importance to effectively manage its evolution. This article proposes a pattern-based approach for capturing and describing behavioral changes by integrating recent advantages in the fields of system monitoring and model differencing. Observed changes are described as lifted model differences between two model versions. This helps in explaining observable evolution with a change-first approach.

Zusammenfassung

Durch den fortwährenden Evolutionsprozess unterliegen Produktionssysteme einem stetigen Wandel ihres Verhaltens. Um Evolution systematisch zu verstehen, müssen diese Änderungen erfasst werden. Dazu wird ein musterbasierter Ansatz zur Erkennung von Verhaltensänderungen vorgestellt, der Evolution durch beobachtbare und semantisch angereicherte Änderungen beschreibt und als zentrales Artefakt der Evolution etabliert.

Keywords: evolutionary changes; semantic lifting of model differences; derived behavior models; manufacturing systems

Schlagwörter: evolutionäre Änderungen; semantisches Liften von Modelldifferenzen; abgeleitete Verhaltensmodelle; Fertigungssysteme

References

  • 1.

    Luca Berardinelli, Stefan Biffl, Emanuel Maetzler, Tanja Mayerhofer and Manuel Wimmer, Model-based co-evolution of production systems and their libraries with AutomationML, in: Conf. on Emerging Technologies and Factory Automation.Google Scholar

  • 2.

    Valentina Boschian, Mariagrazia Dotoli, Maria Pia Fanti, Giorgio Iacobellis and Walter Ukovich, A metamodeling approach to the management of intermodal transportation networks, Transactions on Automation Science and Engineering 8 (2011), 457–469.CrossrefWeb of ScienceGoogle Scholar

  • 3.

    Petra Brosch, Philip Langer, Martina Seidl, Konrad Wieland, Manuel Wimmer andet al., An example is worth a thousand words: Composite operation modeling by-example, in: Int. Conf. on Model Driven Engineering Languages and Systems, Springer, pp. 271–285, 2009.Google Scholar

  • 4.

    Abhishek Chakraborty, Christopher Haubeck, Alexander Fay and Winfried Lamersdorf, Signal-based Context Comparative Analysis for Identification of Similar Manufacturing Modules, in: 16th Symposium on Information Control Problems in Manufacturing, 2018.Google Scholar

  • 5.

    Antonio Cicchetti, Davide Di Ruscio and Alfonso Pierantonio, Model patches in model-driven engineering, in: Int. Conf. on Model Driven Engineering Languages and Systems, Springer, pp. 190–204, 2009.Google Scholar

  • 6.

    E. Estévez, Marga Marcos, Arndt Lüder and Lorenz Hundt, PLCopen for achieving interoperability between development phases, in: Conf. on Emerging Technologies and Factory Automation, IEEE, pp. 1–8, 2010.Google Scholar

  • 7.

    Liqing Fan, Bhat Nikhil Jagdish, A Senthil Kumar, Subramanian Anbuselvan and Shung-Hwee Bok, Collaborative fixture design and analysis using service oriented architecture, transactions on automation science and engineering 7 (2010), 617–629.Web of ScienceCrossrefGoogle Scholar

  • 8.

    Stefan Feldmann, Konstantin Kernschmidt and Birgit Vogel-Heuser, Combining a SysML-based modeling approach and semantic technologies for analyzing change influences in manufacturing plant models, Procedia CIRP 17 (2014), 451–456.CrossrefGoogle Scholar

  • 9.

    Timo Kehrer, Udo Kelter, Pit Pietsch and Maik Schmidt, Adaptability of model comparison tools, in: Procc of the 27th Int. Conf. on Automated Software Engineering, ACM, pp. 306–309, 2012.Google Scholar

  • 10.

    Timo Kehrer, Udo Kelter and Gabriele Taentzer, A rule-based approach to the semantic lifting of model differences in the context of model versioning, in: Proc. of the 26th Int. Conf. on Automated Software Engineering, IEEE, pp. 163–172, 2011.Google Scholar

  • 11.

    Timo Kehrer, Udo Kelter and Gabriele Taentzer, Consistency-preserving edit scripts in model versioning, in: Int. Conf. on Automated Software Engineering, IEEE, pp. 191–201, 2013.Google Scholar

  • 12.

    Timo Kehrer, Udo Kelter and Gabriele Taentzer, Propagation of software model changes in the context of industrial plant automation, at-Automatisierungstechnik 62 (2014), 803–814.Web of ScienceGoogle Scholar

  • 13.

    Patrick Könemann, Capturing the intention of model changes, in: Int. Conf. on Model Driven Engineering Languages and Systems, Springer, pp. 108–122, 2010.Google Scholar

  • 14.

    J. Ladiges, A. Fülber, E. Arroyo, A. Fay, C. Haubeck and W. Lamersdorf, Learning material flow models for manufacturing plants from data traces, in: 2015 IEEE 13th International Conference on Industrial Informatics (INDIN), IEEE, pp. 294–301, 2015.Google Scholar

  • 15.

    Jan Ladiges, Christopher Haubeck, Alexander Fay and Winfried Lamersdorf, Evolution management of production facilities by semi-automated requirement verification, at-Automatisierungstechnik 62 (2014), 781–793.Web of ScienceGoogle Scholar

  • 16.

    Jan Ladiges, Christopher Haubeck, Alexander Fay and Winfried Lamersdorf, Learning behaviour models of discrete event production systems from observing input/output signals, IFAC-PapersOnLine 48 (2015), 1565–1572.CrossrefGoogle Scholar

  • 17.

    Philip Langer, Adaptable Model Versioning based on Model Transformation By Demonstration, Ph.D. thesis, Institut für Softwaretechnik und Interaktive Systeme, 2011.Google Scholar

  • 18.

    Daniel Regulin, Thomas Aicher and Birgit Vogel-Heuser, Improving transferability between different engineering stages in the development of automated material flow modules, Transactions on Automation Science and Engineering 13 (2016), 1422–1432.Web of ScienceCrossrefGoogle Scholar

  • 19.

    Miriam Schleipen, Arndt Lüder, Olaf Sauer, Holger Flatt and Jürgen Jasperneite, Requirements and concept for plug-and-work, at-Automatisierungstechnik 63 (2015), 801–820.Web of ScienceGoogle Scholar

  • 20.

    Martin Strube, Stefan Runde, Helmut Figalist and Alexander Fay, Risk minimization in modernization projects of plant automation—a knowledge-based approach by means of semantic web technologies, in: Conf. on Emerging Technologies & Factory Automation, IEEE, pp. 1–8, 2011.Google Scholar

  • 21.

    Birgit Vogel-Heuser, Stefan Feldmann, Jens Folmer, Jan Ladiges, Alexander Fay andet al., Selected challenges of software evolution for automated production systems, in: Int. Conf. on Industrial Informatics, IEEE, pp. 314–321, 2015.Google Scholar

  • 22.

    Birgit Vogel-Heuser, Christoph Legat, Jens Folmer and Stefan Feldmann, Researching evolution in industrial plant automation: Scenarios and documentation of the pick and place unit, Institute of Automation and Information Systems, Technische Universität München, Report, 2014.Google Scholar

  • 23.

    Valeriy Vyatkin, Software engineering in industrial automation: State-of-the-art review, Transactions on Industrial Informatics 9 (2013), 1234–1249.Web of ScienceCrossrefGoogle Scholar

About the article

Christopher Pietsch

Christopher Pietsch is scientific assistant in the Software Engineering and Database Systems Group at the University of Siegen, Germany. His main scientific interests are model-based system development, model co-evolution and delta-oriented model-based Software Product Line Engineering.

Udo Kelter

Prof. Dr. Udo Kelter holds the chair of Software Engineering and Database Systems at the University of Siegen, Germany. His main fields of research are model-based system development and version management.

Christopher Haubeck

Christopher Haubeck (born 1985) is a researcher in the Distributed Systems research unit in the department for informatics of the Hamburg University. His main scientific interests are software for distributed and cyber-physical systems, architectures for knowledge carrying software, coevolution of runtime artefacts and simulation.

Winfried Lamersdorf

Winfried Lamersdorf is a professor in the Informatics Department of Hamburg University and head of the Distributed Systems research unit. His main scientific interests are in the areas of system software for distributed systems, service-orientation, middleware, agent- and component-oriented, autonomous, self-organizing and mobile systems as well as related applications from e-business / e-services via business process management up to logistics and production automation.

Abhishek Chakraborty

Abhishek Chakraborty (born 1988) is currently working as a Research Associate with the Institute of Automation Technology at Helmut Schmidt University Hamburg. His main research interests are management of evolution in automated systems, behavior models and cyber-physical systems.

Alexander Fay

Prof. Dr.-Ing. Alexander Fay (born 1970) is Director of the Institute of Automation Technology at Helmut Schmidt University Hamburg. His main research interests are models, methods, and tools for the efficient engineering of distributed automation systems. Prof. Fay also heads the division “Engineering and operation” in the German association for Measurement and Automation (VDI-/VDE-GMA) and is member of the Scientific Advisory Board of the German Platform “Industrie 4.0”.


Received: 2018-04-08

Accepted: 2018-07-30

Published Online: 2018-10-17

Published in Print: 2018-10-25


Funding Source: Deutsche Forschungsgemeinschaft

Award identifier / Grant number: FA853/6-2

This work was partially supported by the DFG (German Research Foundation) under the Priority Programme SPP1593: Design for Future – Managed Software Evolution, under grant no. FA853/6-2.


Citation Information: at - Automatisierungstechnik, Volume 66, Issue 10, Pages 795–805, ISSN (Online) 2196-677X, ISSN (Print) 0178-2312, DOI: https://doi.org/10.1515/auto-2018-0046.

Export Citation

© 2018 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in