Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Applied Geodesy

Editor-in-Chief: Kahmen, Heribert / Rizos, Chris


CiteScore 2018: 1.61

SCImago Journal Rank (SJR) 2018: 0.532
Source Normalized Impact per Paper (SNIP) 2018: 1.064

Online
ISSN
1862-9024
See all formats and pricing
More options …
Volume 13, Issue 1

Issues

Contribution of satellite altimetry in modelling Moho density contrast in oceanic areas

M. Abrehdary
  • Corresponding author
  • Division of Mathematics, Computer and Surveying Engineering, University West (HV), SE-461 86 Trollhättan, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ L. E. Sjöberg
  • Division of Mathematics, Computer and Surveying Engineering, University West (HV), SE-461 86 Trollhättan, Sweden
  • Division of Geodesy and Satellite Positioning, Royal Institute of Technology (KTH), SE-100 44 Stockholm, Sweden
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ D. Sampietro
Published Online: 2018-10-19 | DOI: https://doi.org/10.1515/jag-2018-0034

Abstract

The determination of the oceanic Moho (or crust-mantle) density contrast derived from seismic acquisitions suffers from severe lack of data in large parts of the oceans, where have not yet been sufficiently covered by such data. In order to overcome this limitation, gravitational field models obtained by means of satellite altimetry missions can be proficiently exploited, as they provide global uniform information with a sufficient accuracy and resolution for such a task. In this article, we estimate a new Moho density contrast model named MDC2018, using the marine gravity field from satellite altimetry in combination with a seismic-based crustal model and Earth’s topographic/bathymetric data. The solution is based on the theory leading to Vening Meinesz-Moritz’s isostatic model. The study results in a high-accuracy Moho density contrast model with a resolution of 1° × 1° in oceanic areas. The numerical investigations show that the estimated density contrast ranges from 14.2 to 599.7 kg/m3 with a global average of 293 kg/m3. In order to evaluate the accuracy of the MDC2018 model, the result was compared with some published global models, revealing that our altimetric model is able to image rather reliable information in most of the oceanic areas. However, the differences between this model and the published results are most notable along the coastal and polar zones, which are most likely due to that the quality and coverage of the satellite altimetry data are worsened in these regions.

Keywords: Isostasy; Vening Meinesz-Moritz; Moho Density Contrast; satellite altimetry; GMG2014; MDC2018

References

  • [1]

    Abrehdary, M.; Sjöberg, L.E.; Bagherbandi, M.; Sampietro, D. Towards the Moho depth and Moho density contrast along with their uncertainties from seismic and satellite gravity observations. Journal of Applied Geodesy, 2017, 11(4), 231–247.Web of ScienceGoogle Scholar

  • [2]

    Abrehdary, M.; Sjöberg, L.E.; Bagherbandi, M. Modelling Moho depth in ocean areas based on satellite altimetry using Vening Meinesz–Moritz’method. Acta Geodaetica et Geophysica, 2015a, 51(2), 137–149.Web of ScienceGoogle Scholar

  • [3]

    Abrehdary, M.; Sjöberg, L.E.; Bagherbandi, M. Combined Moho parameters determination using CRUST1.0 and Vening Meinesz-Moritz model. Journal of Earth Science, 2015b, 26(4), 607–616.CrossrefWeb of ScienceGoogle Scholar

  • [4]

    Abrehdary, M. Recovering Moho parameters using gravimetric and seismic data, Doctoral dissertation. 2016, KTH Royal Institute of Technology.Google Scholar

  • [5]

    Aitken, A.; Salmon, M.; Kennett, B. Australia’s Moho: A test of usefulness of gravity modelling for the determination of Moho depth. Tectonophysics, 2013, 609, 468–479.Web of ScienceCrossrefGoogle Scholar

  • [6]

    Andersen, O.B.; Knudsen, P. The role of satellite altimetry in gravity field modelling in coastal areas. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2000 Jan 1, 25(1), 17–24.CrossrefGoogle Scholar

  • [7]

    Bassin, C.; Laske, G.; Masters, T.G. The current limits of resolution for surface wave tomography in North America. EOS Trans AGU, 2002, 81, F897.Google Scholar

  • [8]

    Bagherbandi, M.; Sjöberg, L.E. Improving gravimetric-isostatic models of crustal depth by correcting for non-isostatic effects and using CRUST2.0. Earth Sci. Rev., 2013, 117, 29–39.Web of ScienceCrossrefGoogle Scholar

  • [9]

    Bai, Y.; Williams, S.E.; Müller, R.D.; Liu, Z.; Hosseinpour, M. Mapping crustal thickness using marine gravity data: Methods and uncertainties Crustal thickness by gravity inversion. Geophysics, 2014 Mar 1 79(2), G1-0.Google Scholar

  • [10]

    Bott, M.H.P. The Interior of the Earth, Edward Arnold Publs., 1971, London, 316.Google Scholar

  • [11]

    Carlson, R.L.; Raskin, G.S. Density of the ocean crust. Nature, 1984 Oct, 311(5986), 555.CrossrefGoogle Scholar

  • [12]

    Deng, X.; Griffin, D.A.; Ridgway, K.; Church, J.A.; Featherstone, W.E.; White, N.J.; Cahill, M. Satellite altimetry for geodetic, oceanographic, and climate studies in the Australian region. In: Coastal altimetry (2011, pp. 473–508). Springer Berlin Heidelberg.Google Scholar

  • [13]

    Hwang, C; Parsons, B. An optimal procedure for deriving marine gravity from multi-satellite altimetry. J Geophys Int, 1996, 125, 705–719.CrossrefGoogle Scholar

  • [14]

    Eshagh, M.; Hussain, M.; Tenzer, R.; Romeshkani, M. Moho density contrast in central Eurasia from GOCE gravity gradients. Remote Sensing, 2017, 8, 418, 1–18.Web of ScienceGoogle Scholar

  • [15]

    Goodacre, A.K. Generalized structure and composition of the deep crust and upper mantle in Canada. J. Geophys. Res., 1972, 77, 3146–3160.CrossrefGoogle Scholar

  • [16]

    Laske, G.; Masters, G.; Ma, Z.; Pasyanos, M.E. Update on CRUST1.0-A 1-degree global model of Earth’s crust. Geophys. Res. Abstr., 2013, 15, EGU2013-2658.Google Scholar

  • [17]

    Mariani, P.; Braitenberg, C.; Ussami, N. Explaining the thick crust in Paraná basin, Brazil, with satellite GOCE gravity observations. J. South Am. Earth Sci., 2013, 45, 209–223.CrossrefGoogle Scholar

  • [18]

    Müller, R.D.; Sdrolias, M.; Gaina, C.; Roest, W.R. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophysics, Geosystems, 2008 Apr 1, 9(4).Web of ScienceGoogle Scholar

  • [19]

    Niu, F.; James, D.E. Fine structure of the lowermost crust beneath the Kaapvaal craton and its implications for crustal formation and evolution. Earth Planet. Sci. Lett., 2002, 200, 121–130.CrossrefGoogle Scholar

  • [20]

    Pavlis, N.K.; Factor, J.K.; Holmes, S.A. Terrain-related gravimetric quantities computed for the next EGM. In: Proceedings of the 1st International Symposium of the International Gravity Field Service vol. 18 (2007, pp. 318–323). Harita Dergisi, Istanbul.Google Scholar

  • [21]

    Rapp, R.H. A comparison of altimeter and gravimetric geoids in the Tonga Trench and Indian Ocean areas. Bulletin géodésique, 1980, 54(2), 149–163.CrossrefGoogle Scholar

  • [22]

    Reguzzoni, M.; Sampietro, D.; Sansò, F. Global Moho from the combination of the CRUST2. 0 model and GOCE data. Geophysical Journal International, 2013, 195(1), 222–237.Web of ScienceCrossrefGoogle Scholar

  • [23]

    Reguzzoni, M.; Sampietro, D. GEMMA: An Earth crustal model based on GOCE satellite data. Int. J. Appl. Earth Obs. Geoinf., 2015, 35, 31–43.Web of ScienceCrossrefGoogle Scholar

  • [24]

    Sampietro, D.; Mansi, A.; Capponi, M. Moho depth and crustal architecture beneath the Levant Basin from Global Gravity Field Model. Geosciences, 2018, 8(6), 200.Web of ScienceCrossrefGoogle Scholar

  • [25]

    Root, B.C.; van der Wal, W.; Novák, P.; Ebbing, J.; Vermeersen, L.L. Glacial isostatic adjustment in the static gravity field of Fennoscandia. Journal of Geophysical Research: Solid Earth, 2015 Jan 1, 120(1), 503–518.Web of ScienceGoogle Scholar

  • [26]

    Sjöberg, L.E. Solving Vening Meinesz-Moritz inverse problem in isostasy. Geophys. J. Int., 2009, 179, 1527–1536.CrossrefWeb of ScienceGoogle Scholar

  • [27]

    Sjöberg, L.E.; Bagherbandi, M. A method of estimating the Moho density contrast with a tentative application by EGM08 and CRUST2.0. Acta Geophys., 2011, 59, 502–525.CrossrefWeb of ScienceGoogle Scholar

  • [28]

    Sjöberg, L.E. On the isostatic gravity anomaly and disturbance and their applications to Vening Meinesz-Moritz inverse problem of isostasy. Geophys. J. Int., 2013, 193, 1277–1282.CrossrefGoogle Scholar

  • [29]

    Sandwell, D.T.; Müller, R.D.; Smith, W.H.F.; Garcia, E.; Francis, R. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 2014, 346(6205), 65–67, doi: . Author information and acknowledgments.CrossrefWeb of ScienceGoogle Scholar

  • [30]

    Tenzer, R.; Bagherbandi, M.; Gladkikh, V. Signature of the upper mantle density structure in the refined gravity data. Comput. Geosci., 2012, 16, 975–986.CrossrefGoogle Scholar

  • [31]

    Tenzer, R.; Bagherbandi, M.; Vajda, P. Global model of the upper mantle lateral density structure based on combining seismic and isostatic models. Geosci. J., 2013, 17, 65–73.Web of ScienceCrossrefGoogle Scholar

  • [32]

    Tenzer, R.; Chen, W. Regional gravity inversion of crustal thickness beneath the Tibetan plateau. Earth Sci. Inform., 2014, 7, 265–276.Web of ScienceCrossrefGoogle Scholar

  • [33]

    Tenzer, R.; Eshagh, M.; Jin, S. Martian sub-crustal stress from gravity and topographic models. Earth Planet. Sci. Lett., 2015a, 425, 84–92.Web of ScienceCrossrefGoogle Scholar

  • [34]

    Tenzer, R.; Chen, W.; Jin, S. Effect of Upper Mantle Density Structure on Moho Geometry. Pure Appl. Geophys., 2015b, 172, 1563–1583.Web of ScienceCrossrefGoogle Scholar

  • [35]

    Van der Meijde, M.; Juliá, J.; Assumpcáo, M. Gravity derived Moho for South America. Tectonophysics, 2013, 609, 456–467.Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2018-09-09

Accepted: 2018-10-05

Published Online: 2018-10-19

Published in Print: 2019-01-28


Citation Information: Journal of Applied Geodesy, Volume 13, Issue 1, Pages 33–40, ISSN (Online) 1862-9024, ISSN (Print) 1862-9016, DOI: https://doi.org/10.1515/jag-2018-0034.

Export Citation

© 2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission

Comments (0)

Please log in or register to comment.
Log in