Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Journal of Pediatric Endocrinology and Metabolism

Editor-in-Chief: Kiess, Wieland

Ed. by Bereket, Abdullah / Darendeliler, Feyza / Dattani, Mehul / Gustafsson, Jan / Luo, Fei Hong / Mericq, Veronica / Toppari, Jorma


IMPACT FACTOR 2017: 1.086

CiteScore 2018: 1.22

SCImago Journal Rank (SJR) 2018: 0.507
Source Normalized Impact per Paper (SNIP) 2018: 0.562

Online
ISSN
2191-0251
See all formats and pricing
More options …
Volume 28, Issue 9-10

Issues

Phosphate homeostasis and genetic mutations of familial hypophosphatemic rickets

Nurul Nadirah Razali
  • Clinical Genetics Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM SERDANG, Selangor Darul Ehsan, Malaysia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ting Tzer Hwu
  • Department of Paediatrics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM SERDANG, Selangor Darul Ehsan, Malaysia.
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Karuppiah Thilakavathy
  • Corresponding author
  • Clinical Genetics Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM SERDANG, Selangor Darul Ehsan, Malaysia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-04-18 | DOI: https://doi.org/10.1515/jpem-2014-0366

Abstract

Hypophosphatemic rickets (HR) is a syndrome of hypophosphatemia and rickets that resembles vitamin D deficiency, which is caused by malfunction of renal tubules in phosphate reabsorption. Phosphate is an essential mineral, which is important for bone and tooth structure. It is regulated by parathyroid hormone, 1,25-dihydroxyvitamin D and fibroblast-growth-factor 23 (FGF23). X-linked hypophosphatemia (XLH), autosomal dominant HR (ADHR), and autosomal recessive HR (ARHR) are examples of hereditary forms of HR, which are mainly caused by mutations in the phosphate regulating endopeptidase homolog, X-linked (PHEX), FGF23, and, dentin matrix protein-1 (DMP1) and ecto-nucleotide pyro phosphatase/phosphodiesterase 1 (ENPP1) genes, respectively. Mutations in these genes are believed to cause elevation of circulating FGF23 protein. Increase in FGF23 disrupts phosphate homeostasis, leading to HR. This review aims to summarize phosphate homeostasis and focuses on the genes and mutations related to XLH, ADHR, and ARHR. A compilation of XLH mutation hotspots based on the PHEX gene database and mutations found in the FGF23, DMP1, and ENPP1 genes are also made available in this review.

Keywords: DMP1; ENPP1; FGF23; hypophosphatemia; hypophosphatemic rickets; PHEX; phosphate homeostasis

References

  • 1.

    Wharton B, Bishop N. Rickets. Lancet 2003;362:1389–400.PubMedCrossrefGoogle Scholar

  • 2.

    Bhadada SK, Bhansali A, Upreti V, Dutta P, Santosh R, et al. Hypophosphataemic rickets/osteomalacia: a descriptive analysis. Indian J Med Res 2010;131:399–404.PubMedGoogle Scholar

  • 3.

    Roth KS, Kemp S. Hypophosphatemic Rickets. Medscape; Dec 3, 2014. Available from: http://emedicine.medscape.com/article/922305-overview.

  • 4.

    McBride A, Edwards M, Monsell F, Gargan M. Vitamin D-resistant rickets (X-linked hypophosphataemic rickets). Curr Orthop 2007;21:396–9.CrossrefGoogle Scholar

  • 5.

    Tiosano D, Hochberg Z. Hypophosphatemia: the common denominator of all rickets. J Bone Miner Metab 2009;27:392–401.PubMedCrossrefGoogle Scholar

  • 6.

    Penido MGMG, Alon US. Phosphate homeostasis and its role in bone health. Pediatr Nephrol 2012;27:2039–48.CrossrefGoogle Scholar

  • 7.

    Jagtap VS, Sarathi V, Lila AR, Bandgar T, Menon P, et al. Hypophosphatemic rickets. Indian J Endocrinol Metab 2012;16:177–82.PubMedCrossrefGoogle Scholar

  • 8.

    Douyere D, Joseph C, Gaucher C, Chaussain C, Courson F. Familial hypophosphatemic vitamin D-resistant rickets–prevention of spontaneous dental abscesses on primary teeth: a case report. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009;107:525–30.CrossrefGoogle Scholar

  • 9.

    Pettifor JM. What’s new in hypophosphataemic rickets? Eur J Pediatr 2008;167:493–9.Google Scholar

  • 10.

    Ruppe MD, Brosnan PG, Au KS, Tran PX, Barbara W. Mutation Analysis of PHEX, FGF23 and DMP1 in a cohort of patients with hypophosphatemic rickets. 2012;74:312–8.Google Scholar

  • 11.

    Kang Q, Xu J, Zhang Z, He J, Lu L, et al. Three novel mutations of the PHEX gene in three Chinese families with X-linked dominant hypophosphatemic rickets. Biochem Biophys Res Commun 2012;81:415–20.Google Scholar

  • 12.

    Saggese G, Baroncelli GI, Bertelloni S, Perri G. Long-term growth hormone treatment in children with renal hypophosphatemic rickets: effects on growth, mineral metabolism, and bone density. J Pediatr 1995;127:395–402.PubMedCrossrefGoogle Scholar

  • 13.

    Seton M, Jüppner H. Autosomal dominant hypophosphatemic rickets in an 85 year old woman: characterization of her disease from infancy through adulthood. Bone 2013;52:640–3.CrossrefGoogle Scholar

  • 14.

    Masi L, Carbonella Sala S, Gozzini A, Pela I, Luzi E, et al. A novel mutation of PHEX causes a dominant X-linked hypophosphatemic rickets. Bone 2007;40.CrossrefGoogle Scholar

  • 15.

    Jonsson K, Zahradnik R, Larsson T, White KE, Sugimoto T, et al. Fibroblast Growth Factor 23 in Oncogenic Osteomalacia and X-Linked Hypophosphatemia. N Engl J Med 2003;348:1656–63.CrossrefPubMedGoogle Scholar

  • 16.

    Berndt T, Craig TA, Bowe AE, Vassiliadis J, Reczek D, et al. Secreted frizzled-related protein 4 is a potent tumor-derived phosphaturic agent. J Clin Invest 2003;112:785–94.CrossrefPubMedGoogle Scholar

  • 17.

    Carpenter TO, Ellis BK, Insogna KL, Philbrick WM, Sterpka J, et al. FGF7 – an inhibitor of phosphate transport derived from oncogenic osteomalacia-causing tumors. J Clin Endocrinol Metab 2005;90:1012–20.CrossrefGoogle Scholar

  • 18.

    Rowe PS, de Zoysa PA, Dong R, Wang HR, White KE, et al. MEPE, a new gene expressed in bone marrow and tumors causing osteomalacia. Genomics 2000;67:54–68.PubMedCrossrefGoogle Scholar

  • 19.

    Feng JQ, Ward LM, Liu S, Lu Y, Xie Y, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet 2006;38:1310–5.CrossrefGoogle Scholar

  • 20.

    Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, et al. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 2012;13:134.CrossrefGoogle Scholar

  • 21.

    Andrukhova O, Zeitz U, Goetz R, Mohammadi M, Lanske B, et al. FGF23 acts directly on renal proximal tubules to induce phosphaturia through activation of the ERK1_2–SGK1 signaling pathway.pdf. Bone 2012;51:621–8.Google Scholar

  • 22.

    Prié D, Torres PU, Friedlander G. Latest findings in phosphate homeostasis. Kidney Int 2009;75:882–9.PubMedCrossrefGoogle Scholar

  • 23.

    Goetz R, Nakada Y, Hu MC, Kurosu H, Wang L, et al. Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation. Proc Natl Acad Sci USA 2010;107:407–12.CrossrefGoogle Scholar

  • 24.

    Raina R, Garg G, Sethi SK, Schreiber MJ, Simon JF, et al. Phosphorus Metabolism. J Nephrol Therapeutic 2012; S3:008.CrossrefGoogle Scholar

  • 25.

    Kurosu H, Ogawa Y, Miyoshi M, Yamamoto M, Nandi A, et al. Regulation of fibroblast growth factor-23 signaling by klotho. J Biol Chem 2006;281:6120–3.Google Scholar

  • 26.

    Ben-dov IZ, Galitzer H, Lavi-moshayoff V, Goetz R, Kuro-o M, et al. The parathyroid is a target organ for FGF23 in rats. J Clin Invest 2007;117:4003–8.Google Scholar

  • 27.

    Wheeler DL, Barrett T, Benson D a, Bryant SH, Canese K, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res 2007;35(Database issue):D5–12.CrossrefGoogle Scholar

  • 28.

    Sabbagh Y, Jones AO, Tenenhouse HS. PHEXdb, a locus-specific database for mutations causing X-linked hypophosphatemia. Wiley Online Libr 2000;16:1–6.Google Scholar

  • 29.

    Durmaz E, Zou M, Al-Rijjal RA, Baitei EY, Hammami S, et al. Novel and de novo PHEX mutations in patients with hypophosphatemic rickets. Bone 2013;52:286–91.CrossrefPubMedGoogle Scholar

  • 30.

    Nelson AE, Mason RS, Robinson BG. The PEX gene: not a simple answer for X-linked hypophosphataemic rickets and oncogenic osteomalacia. Mol Cell Endocrinol 1997;132:1–5.CrossrefGoogle Scholar

  • 31.

    Fukumoto S, Yamashita T. FGF23 is a hormone-regulating phosphate metabolism–unique biological characteristics of FGF23. Bone 2007;40:1190–5.CrossrefGoogle Scholar

  • 32.

    Rowe PSN. Regulation of bone–renal mineral and energy metabolism: the PHEX, FGF23, DMP1, MEPE ASARM pathway. Crit Rev Eukaryot Gene Expr 2013;22:61–86.Google Scholar

  • 33.

    Song H-R, Park J-W, Cho D-Y, Yang JH, Yoon H-R, et al. PHEX gene mutations and genotype-phenotype analysis of Korean patients with hypophosphatemic rickets. J Korean Med Sci 2007;22:981.PubMedCrossrefGoogle Scholar

  • 34.

    Qiu Z, Travers R, Rauch F, Glorieux F, Scriver C, et al. Effect of gene dose and parental origin on bone histomorphometry in X-linked Hyp mice. Bone 2004;34:134–9.CrossrefGoogle Scholar

  • 35.

    Francis F, Strom TM, Hennig S, Bo A, Lorenz B, et al. Genomic organization of the human PEX gene mutated in X-linked genomic organization of the human PEX gene mutated in X-linked dominant hypophosphatemic rickets. Genome Res 1997;7:573–85.PubMedGoogle Scholar

  • 36.

    Morey M, Castro-Feijóo L, Barreiro J, Cabanas P, Pombo M, et al. Genetic diagnosis of X-linked dominant hypophosphatemic rickets in a cohort study: tubular reabsorption of phosphate and 1,25(OH)2D serum levels are associated with PHEX mutation type. BMC Med Genet 2011;12:116.CrossrefGoogle Scholar

  • 37.

    Reichardt B, Schrader M, Mojto J, Mehltretter G, Muller O-A, et al. The decrease in growth hormone (GH) Response after Repeated Stimulation with GH-releasing hormone os partly caused by an elevation of somatostatin tonus. J Clin Endocrinol Metab1996;81:1994–8.Google Scholar

  • 38.

    Sabbagh Y, Boileau G, DesGroseillers L, Tenenhouse HS. Disease-causing missense mutations in the PHEX gene interfere with membrane targeting of the recombinant protein. Hum Mol Genet 2001;10:1539–46.CrossrefPubMedGoogle Scholar

  • 39.

    Young L, Jernigan RL, Covell DG. A role for surface hydrophobicity in protein-protein recognition. Protein Sci 1994;3:717–29.CrossrefPubMedGoogle Scholar

  • 40.

    Ichikawa S, Traxler E a, Estwick S a, Curry LR, Johnson ML, et al. Mutational survey of the PHEX gene in patients with X-linked hypophosphatemic rickets. Bone 2008;43:663–6.PubMedCrossrefGoogle Scholar

  • 41.

    Holm IA, Nelson AE, Robinson BG, Mason RS, Marsh DJ, et al. Mutational analysis and genotype-phenotype correlation of the PHEX gene in X-linked hypophosphatemic rickets. J Clin Endocrinol Metab 2001;86:3889–99.CrossrefPubMedGoogle Scholar

  • 42.

    Lo F-S, Kuo M-T, Wang C-J, Chang C-H, Lee Z-L, et al. Two novel PHEX mutations in Taiwanese patients with X-linked hypophosphatemic rickets. Nephron Physiol 2006;103:157–63.CrossrefGoogle Scholar

  • 43.

    Quinlan C, Guegan K, Offiah A, Neill RO, Hiorns MP, et al. Growth in PHEX-associated X-linked hypophosphatemic rickets: the importance of early treatment. Pediatr Nephrol 2012;27:581–8.CrossrefPubMedGoogle Scholar

  • 44.

    Živičnjak M, Schnabel D, Staude H, Even G, Marx M, et al. Three-year growth hormone treatment in short children with X-linked hypophosphatemic rickets: effects on linear growth and body disproportion. J Clin Endocrinol Metab 2011;96:E2097–105.CrossrefGoogle Scholar

  • 45.

    Cho HY, Lee BH, Kang JH, Ha IS, Cheong HI, et al. A clinical and molecular genetic study of hypophosphatemic rickets in children. Pediatr Res 2005;58:329–33.CrossrefPubMedGoogle Scholar

  • 46.

    Sato K, Tajima T, Nakae J, Adachi M, Asakura Y, et al. Three novel PHEX gene mutations in Japanese patients with X-linked hypophosphatemic rickets. Pediatr Res 2000;48:536–40.CrossrefPubMedGoogle Scholar

  • 47.

    Kim J, Yang KH, Nam JS, Choi JR, Song J, et al. A novel PHEX mutation in a Korean patient with sporadic hypophosphatemic rickets. Ann Clin Lab Sci 2009;39:182–7.Google Scholar

  • 48.

    Yang L, Yang J, Huang X. PHEX gene mutation in a Chinese family with six cases of X linked hypophosphatemic rickets. J Pediatr Endocrinol Metab 2013;26:4–5.CrossrefGoogle Scholar

  • 49.

    Dunstan CR, Zhou H, Seibel MJ. Fibroblast growth factor 23: a phosphatonin regulating phosphate homeostasis? Endocrinology 2004;145:3084–6.PubMedCrossrefGoogle Scholar

  • 50.

    Imel EA, Peacock M, Gray AK, Padgett LR, Hui SL, et al. Iron modifies plasma FGF23 differently in autosomal dominant hypophosphatemic rickets and healthy humans. J Clin Endocrinol Metab 2011;96:3541–9.CrossrefGoogle Scholar

  • 51.

    Gribaa M, Younes M, Bouyacoub Y, Korbaa W, Ben Charfeddine I, et al. An autosomal dominant hypophosphatemic rickets phenotype in a Tunisian family caused by a new FGF23 missense mutation. J Bone Miner Metab 2010;28:111–5.CrossrefGoogle Scholar

  • 52.

    Kinoshita Y, Saito T, Shimizu Y, Hori M, Taguchi M, et al. Mutational analysis of patients with FGF23-related hypophosphatemic rickets. Eur J Endocrinol 2012;167:165–72.Google Scholar

  • 53.

    Farrow EG, Davis SI, Ward LM, Summers LJ, Bubbear JS, et al. Molecular analysis of DMP1 mutants causing autosomal recessive hypophosphatemic rickets. Bone 2009;44:287–94.CrossrefGoogle Scholar

  • 54.

    Turan S, Aydin C, Bereket A, Akcay T, Güran T, et al. Identification of a novel dentin matrix protein-1 (DMP-1) mutation and dental anomalies in a kindred with autosomal recessive hypophosphatemia. Bone 2010;46:402–9.CrossrefGoogle Scholar

  • 55.

    Lorenz-Depiereux B, Benet-Pages A, Eckstein G, Tenenbaum-Rakover Y, Wagenstaller J, et al. Hereditary hypophosphatemic rickets with hypercalciuria is caused by mutations in the sodium-phosphate cotransporter gene SLC34A3. Am J Hum Genet 2006;78:193–201.CrossrefGoogle Scholar

  • 56.

    Koshida R, Yamaguchi H, Yamasaki K, Tsuchimochi W, Yonekawa T, et al. A novel nonsense mutation in the DMP1 gene in a Japanese family with autosomal recessive hypophosphatemic rickets. J Bone Miner Metab 2010;28:585–90.CrossrefGoogle Scholar

  • 57.

    Saito T, Shimizu Y, Hori M, Taguchi M, Igarashi T, et al. A patient with hypophosphatemic rickets and ossification of posterior longitudinal ligament caused by a novel homozygous mutation in ENPP1 gene. Bone. Elsevier Inc. 2011;49:913–6.CrossrefGoogle Scholar

  • 58.

    Mackenzie NCW, Zhu D, Milne EM, van ’t Hof R, Martin A, et al. Altered bone development and an increase in FGF-23 expression in Enpp1(-/-) mice. PLoS One 2012;7:e32177.CrossrefGoogle Scholar

  • 59.

    Lorenz-Depiereux B, Schnabel D, Tiosano D, Häusler G, Strom TM. Loss-of-function ENPP1 mutations cause both generalized arterial calcification of infancy and autosomal-recessive hypophosphatemic rickets. Am J Hum Genet 2010;86:267–72.CrossrefGoogle Scholar

  • 60.

    Mäkitie O, Pereira RC, Kaitila I, Turan S, Bastepe M, et al. Long-term clinical outcome and carrier phenotype in autosomal recessive hypophosphatemia caused by a novel DMP1 mutation. J Bone Miner Res 2010;25:2165–74.CrossrefGoogle Scholar

  • 61.

    Levy-Litan V, Hershkovitz E, Avizov L, Leventhal N, Bercovich D, et al. Autosomal-recessive hypophosphatemic rickets is associated with an inactivation mutation in the ENPP1 gene. Am J Hum Genet 2010;86:273–8.CrossrefGoogle Scholar

About the article

Corresponding author: Assoc. Prof. Dr. Karuppiah Thilakavathy, Clinical Genetics Unit, Department of Obstetrics and Gynaecology, Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM SERDANG, Selangor Darul Ehsan, Malaysia, Phone: +60389472652, Fax: +60389472646, E-mail:


Received: 2014-08-28

Accepted: 2015-02-26

Published Online: 2015-04-18

Published in Print: 2015-09-01


Citation Information: Journal of Pediatric Endocrinology and Metabolism, Volume 28, Issue 9-10, Pages 1009–1017, ISSN (Online) 2191-0251, ISSN (Print) 0334-018X, DOI: https://doi.org/10.1515/jpem-2014-0366.

Export Citation

©2015 by De Gruyter.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Fateme Asadzadeh Manjili, Mohammad Hosein Bakhshi Aliabad, Seyed Mehdi Kalantar, Afsaneh Sahebzamani, and Amin Safa
International Journal of Basic Science in Medicine, 2017, Volume 2, Number 3, Page 113
[2]
Silvia Elena Yacarini Paredes, Raquel Assed Bezerra Segato, Leila Daher Moreira, Alcides Moreira, Kranya Victoria Díaz Serrano, Clarissa Teles Rodrigues, Luciana Yamamoto Almeida, and Jorge Esquiche León
Head and Neck Pathology, 2017
[3]
Moses M. Ngari, Johnstone Thitiri, Laura Mwalekwa, Molline Timbwa, Per Ole Iversen, Greg W. Fegan, and James A. Berkley
Maternal & Child Nutrition, 2017, Page e12569
[4]
R. Fuente, H. Gil-Peña, D. Claramunt-Taberner, O. Hernández, A. Fernández-Iglesias, L. Alonso-Durán, E. Rodríguez-Rubio, and F. Santos
Reviews in Endocrine and Metabolic Disorders, 2017, Volume 18, Number 1, Page 107

Comments (0)

Please log in or register to comment.
Log in