Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Pure and Applied Chemistry

The Scientific Journal of IUPAC

Ed. by Burrows, Hugh / Stohner, Jürgen

12 Issues per year


IMPACT FACTOR 2017: 5.294

CiteScore 2017: 3.42

SCImago Journal Rank (SJR) 2017: 1.212
Source Normalized Impact per Paper (SNIP) 2017: 1.546

Online
ISSN
1365-3075
See all formats and pricing
More options …
Volume 88, Issue 6

Issues

Heterocycle-based bifunctional organocatalysts in asymmetric synthesis

Carmen Nájera
  • Corresponding author
  • Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ José Miguel Sansano
  • Departamento de Química Orgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Alicante, Apdo. 99, 03080 Alicante, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Enrique Gómez-Bengoa
  • Departamento de Química Orgánica I, Facultad de Química, Universidad del País Vasco, Apdo. 1072, E-20018 San Sebastián, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-07-28 | DOI: https://doi.org/10.1515/pac-2016-0403

Abstract

Different chiral bifunctional organocatalysts derived from trans-cyclohexane-1,2-diamine bearing different types of guanidine units able to form-hydrogen bonding activation have been designed. Conformational rigid 2-aminobenzimidazoles bearing a tertiary amino group have been used in enantioselective Michael type reactions of activated methylene compounds to nitroalkenes. The C2 symmetric bis(2-aminobenzimidazole) derivatives the appropriate organocatalyst for the conjugate addition of 1,3-dicarbonyl compounds to maleimides as well as for the SN1 reaction of benzylic alcohols with carbon nucleophiles. 2-Aminobenzimidazoles bearing a primary amino group have shown excellent catalytic activity in the Michael reaction of aldehydes to maleimides and nitroalkenes. Diastereomeric 2-aminopyrimidines bearing a prolinamide unit have been incorporated in the trans-cyclohexane-1,2-diamine scaffold and have been used for the inter- and intra-molecular direct aldol reaction under solvent-free conditions. For the Michael reaction of aldehydes with maleimides the primary amine 2-aminopyrimidine has shown excellent efficiency as organocatalyst. The bifunctional character of these organocatalysts has been demonstrated by means of DFT calculations.

Keywords: aldols; asymmetric synthesis; bifunctional catalysis; carbenium ions; 1,3-dicarbonyl compounds; hydrogen bonding; nitro compounds; succinimides; TRAMECH VIII

Article note:

A collection of invited papers based on presentations at the Trans Mediterranean Colloquium on Heterocylic Chemistry (TRAMECH VIII) in Anatalya, Turkey, 11–15 November 2015.

References

  • [1]

    M. S. Taylor, E. N. Jacobsen. Angew. Chem. Int. Ed. 45, 1520 (2006).Google Scholar

  • [2]

    X. Xu, W. Wang. Chem. Asian J. 3, 516 (2008).Google Scholar

  • [3]

    M. Petri, M. Pihko (Eds.). Hydrogen Bonding in Organic Synthesis, Wiley-VCH, Weiheim (2009).Google Scholar

  • [4]

    K. Maruoka (Ed.). Science of Synthesis, Asymmetric Organocatalysis 2, Brønsted Base and Acid Catalysts, and Additional Topics, Thieme, Stuttgart (2012).Google Scholar

  • [5]

    L. Albrecht, H. Jiang, K. A. Jørgensen. Chem. Eur. J. 20, 358 (2014).Google Scholar

  • [6]

    C. L. Cao, M.-C. Ye, X.-L. Sun, Y. Tang. Org. Lett. 8, 2401 (2006).Google Scholar

  • [7]

    Y.-J. Cao, H.-H. Lu, Y.-Y. Lai, L.-Q. Lu, W.-J. Xiao. Synthesis 3795 (2006).Google Scholar

  • [8]

    Y.-J. Cao, Y.-Y. Lai, X. Wang, Y.-J. Li. W.-J. Xiao. Tetrahedron Lett. 48, 21 (2007).Google Scholar

  • [9]

    T. Okino, Y. Hoashi, Y. Takemoto. J. Am. Chem. Soc. 125, 12672 (2003).Google Scholar

  • [10]

    T. Okino, Y. Hoashi, T. Furukawa, X. Xu, Y. Takemoto. J. Am. Chem. Soc. 127, 119 (2005).Google Scholar

  • [11]

    For a review, see: O. V. Serdyuk, C. M. Heckel, S. S. Tsogoeva. Org. Biomol. Chem. 11, 7051 (2013).Google Scholar

  • [12]

    A. G. Doyle, E. N. Jacobsen. Chem. Rev. 107, 5713 (2007).Google Scholar

  • [13]

    R. Chinchilla, C. Nájera, P. Sánchez-Agulló. Tetrahedron: Asymmetry 5, 1393 (1994).Google Scholar

  • [14]

    E. J. Corey, H. J. Grogan. Org. Lett. 1, 157 (1999).Google Scholar

  • [15]

    T. Ishikawa, T. Isobe. Chem. Eur. J. 8, 553 (2002).Google Scholar

  • [16]

    D. Leow, C.-H. Tan, Synlett 1589 (2010).Google Scholar

  • [17]

    T. Ishikawa. Chem. Pharm. Bull. 58, 1555 (2010).Google Scholar

  • [18]

    K. Nagasawa, Y. Sohtome. Science of Synthesis, Asymmetric Organocatalysis 2, Brønsted Base and Acid Catalysts, and Additional Topics, K. Maruoka (Ed.), Thieme, Stuttgart (2012).Google Scholar

  • [19]

    P. Selig. Synthesis 45, 703 (2013).Google Scholar

  • [20]

    A. Ávila, R. Chinchilla, C. Nájera. Tetrahedron: Asymmetry 23, 1625 (2012).Google Scholar

  • [21]

    A. Ávila, R. Chinchilla, E. Gómez-Bengoa, C. Nájera. Eur. J. Org. Chem. 5085 (2013).Google Scholar

  • [22]

    A. Ávila, R. Chinchilla, B. Fiser, E. Gómez-Bengoa, C. Nájera. Tetrahedron: Asymmetry 25, 462 (2014).Google Scholar

  • [23]

    D. Uraguchi, Y. Ueki, T. Ooi. J. Am. Chem. Soc. 130, 14088 (2008).Google Scholar

  • [24]

    D. Uraguchi, Y. Ueki, T. Ooi. Science 326, 120 (2009).Google Scholar

  • [25]

    D. Uraguchi, D. Nakashima, T. Ooi. J. Am. Chem. Soc. 131, 7242 (2009).Google Scholar

  • [26]

    M. Ganesh, D. Seidel. J. Am. Chem. Soc. 130, 16464 (2008).Google Scholar

  • [27]

    J. P. Malerich, K. Hagihara, V. H. Rawal. J. Am. Chem. Soc. 130, 14416 (2008).Google Scholar

  • [28]

    Y. Zhu, J. P. Malerich, V. H. Rawal. Angew. Chem. Int. Ed. 49, 153 (2010).Google Scholar

  • [29]

    W. Zhuang, T. B. Poulsen, K. A. Jørgensen. Org. Biomol. Chem. 3, 3284 (2005).Google Scholar

  • [30]

    T. Schuster, M. Kurz, M. W. Göbel. J. Org. Chem. 65, 1697 (2000).Google Scholar

  • [31]

    B. M. Nugent, R. A. Yoder, J. N. Johnston. J. Am. Chem. Soc. 126, 3418 (2004).Google Scholar

  • [32]

    Z. Tang, L.-F. Cun, X. Cui, A.-Q. Mi, Y.-Z. Jiang, L.-Z. Gong. Org. Lett. 8, 1263 (2006).Google Scholar

  • [33]

    N. Takenaka, R. S. Sarangthem, S. K. Seerla. Org. Lett. 9, 2819 (2007).Google Scholar

  • [34]

    A. Singh, R. A. Yoder, B. Shen, J. N. Johnston. J. Am. Chem. Soc. 129, 3466 (2007).Google Scholar

  • [35]

    A. Singh, J. N. Johnston. J. Am. Chem. Soc. 130, 5866 (2008).Google Scholar

  • [36]

    A. S. Hess, R. A. Yoder, J. N. Johnston. Synlett 147 (2006).Google Scholar

  • [37]

    T. Inokuma, M. Furukawa, T. Uno, Y. Suzuki, K. Yoshida, Y. Yano, K. Matsuzaki, Y. Takemoto. Chem. Eur. J. 17, 10470 (2011).Google Scholar

  • [38]

    Y. Kobayashi, Y. Taniguchi, N. Hayama, T. Inokuma, Y. Takemoto. Angew. Chem. Int. Ed. 52, 11114 (2013).Google Scholar

  • [39]

    U. Scheffer, A. Strick, V. Ludwig, S. Peter, E. Kalden, M. W. Göbel. J. Am. Chem. Soc. 127, 2211 (2005).Google Scholar

  • [40]

    F. M. Muñiz, V. Alcázar, F. Sanz, L. Simón, A. L. Fuentes de Arriba, C. Raposo, J. R. Morán. Eur. J. Org. Chem. 6179 (2010).Google Scholar

  • [41]

    F. Janssens, J. Torremans, M. Janssen, R. A. Stok-Broekx, M. Luyckx, P. A. Janssen. J. Med. Chem. 28, 1925 (1985).Google Scholar

  • [42]

    W. Nawrocka. Bull. Chim. Farm. 135, 18 (1996).Google Scholar

  • [43]

    P. Winstanley. Lancet 352, 1080 (1998).Google Scholar

  • [44]

    A. Carpio, J. Neurol., Neurosurg. Psychiatry 66, 411 (1999).Google Scholar

  • [45]

    R. J. Snow, M. G. Cardozo, T. M. Morwick, C. A. Busacca, Y. Dong, R. J. Eckner, S. Jacober, S. Jakes, S. Kapadia, S. Lukas, M. Panzenbeck, G. W. Peet, J. D. Peterson, A. S. Prokopowicz, III, R. Sellati, R. M. Tolbert, M. A. Tschantz, N. Moss. J. Med. Chem. 45, 3394 (2002).Google Scholar

  • [46]

    A. Kling, G. Backfisch, J. Delzer, H. Geneste, C. Graef, W. Hornberger, U. Lange, A. Lauterbach, W. Seitz, T. Subkowski. Biorg. Med. Chem. 11, 1319 (2003).Google Scholar

  • [47]

    C. G. O’Neill, D. Slipetz, J. Wang. Biorg. Med. Chem. Lett. 14, 3195 (2004).Google Scholar

  • [48]

    For a review on chiral benzimidazoles, see: C. Nájera, M. Yus. Tetrahedron Lett. 56, 2623 (2015).Google Scholar

  • [49]

    D. Almaşi, D. A. Alonso, E. Gómez-Bengoa, C. Nájera. J. Org. Chem. 74, 6163 (2009).Google Scholar

  • [50]

    A. Hamza, G. Schubert, I. Pápai. J. Am. Chem. Soc. 128, 13151 (2006).Google Scholar

  • [51]

    L. Zhang, M.-M. Lee, S.-M. Lie, J. Lee, M. Cheng, B.-S. Jeong, H.-g. Park, S.-s. Jew. Adv. Synth. Catal. 351, 3063 (2009).Google Scholar

  • [52]

    M. Lee, L. Zhang, Y. Park, H.-g. Park. Tetrahedron 68, 1452 (2012).Google Scholar

  • [53]

    P. Trillo, M. Gómez-Martínez, D. A. Alonso, A. Baeza. Synlett 26, 95 (2015).Google Scholar

  • [54]

    T. de A. Fernandes, P. Vizcaíno-Milla, J. M. J. M. Ravasco, A. Ortega-Martínez, J. M. Sansano, C. Nájera, P. R. R. Costa, B. Fiser, E. Gómez-Bengoa. Tetrahedron: Asymmetry 27, 118 (2016).Google Scholar

  • [55]

    For a recent review, see: P. Chauhan, J. Kaur, S. S. Chimni. Chem. Asian J. 8, 328 (2013).Google Scholar

  • [56]

    A. Fredenhagen, S. Y. Tamura, P. T. M. Kenny, H. Komura, Y. Naya, K. Nakanishi, K. Nishiyama, M. Sugiura, H. Kita. J. Am. Chem. Soc. 109, 4409 (1987).Google Scholar

  • [57]

    C. Malochet-Grivois, C. Roussakis, N. Robillard, J. F. Biard, D. Riou, C. Debitus, J. F. Verbist. Anti-Cancer Drug Des. 7, 493 (1992).Google Scholar

  • [58]

    Y. Ando, E. Fuse, W. D. Figg. Clin. Cancer Res. 8, 1964 (2002).Google Scholar

  • [59]

    C. Freiberg, N. A. Brunner, G. Schiffer, T. Lampe, M. Polmann, D. Habich, K. Ziegelbauer. J. Biol. Chem. 279, 26066 (2004).Google Scholar

  • [60]

    M. Isaka, N. Rugseree, P. Maithip, P. Kongsaeree, S. Prabpai, Y. Thebtaranonth. Tetrahedron 61, 5547 (2005).Google Scholar

  • [61]

    J. Uddin, K. Ueda, E. R. O. Siwu, M. Kita, D. Uemura. Biorg. Med. Chem. 14, 6954 (2006).Google Scholar

  • [62]

    For selected examples, see: E. J. Yoo, M. Wasa, J.-Q. Yu. J. Am. Chem. Soc. 132, 17378 (2010).Google Scholar

  • [63]

    S. Das, D. Addis, L. R. Knöpke, U. Bentrup, K. Junge, A. Brückner, M. Beller. Angew. Chem. Int. Ed. 50, 9180 (2011).Google Scholar

  • [64]

    E. Gómez-Torres, D. A. Alonso, E. Gómez-Bengoa, C. Nájera. Org. Lett. 13, 6106 (2011).Google Scholar

  • [65]

    E. Gómez-Torres, D. A. Alonso, E. Gómez-Bengoa, C. Nájera. Eur. J. Org. Chem. 1434 (2013).Google Scholar

  • [66]

    D. Almaşi. PhD Thesis, University of Alicante (2009).Google Scholar

  • [67]

    J. Muzart. Eur. J. Org. Chem. 2007, 3077 (2007).Google Scholar

  • [68]

    E. Emer, R. Sinisi, M. Guiteras-Capdevilla, D. Petruzzielo, F. DeVicentis, P. G. Cozzi. Eur. J. Org. Chem. 2011, 647 (2011).Google Scholar

  • [69]

    B. Biannic, A. Aponick. Eur. J. Org. Chem. 3605 (2011).Google Scholar

  • [70]

    A. Baeza, C. Nájera. Synthesis 46, 25 (2014).Google Scholar

  • [71]

    M. Shibata, M. Ikeda, K. Muyoyama, Y. Miyake, Y. Nishibayashi. Chem. Commun. 48, 9528 (2012).Google Scholar

  • [72]

    P. Trillo, A. Baeza, C. Nájera. Adv. Synth. Catal. 355, 2815 (2013).Google Scholar

  • [73]

    P. Trillo, A. Baeza, C. Nájera. Synthesis 46, 3399 (2014).Google Scholar

  • [74]

    Electrophilicity parameter in Mayr’s scales: S. Minegishi, H. Mayr. J. Am. Chem. Soc. 125, 286 (2003).Google Scholar

  • [75]

    J. Lin, H. Tian, Y.-J. Jiang, W.-B. Huang, L.-Y. Zheng, S.-Q. Zhang. Tetrahedron: Asymmetry 22, 1434 (2011).Google Scholar

  • [76]

    G. Tang, U. Gün, H.-J. Altenbach. Tetrahedron 68, 10230 (2012).Google Scholar

  • [77]

    P. Vizcaíno-Milla, J. M. Sansano, C. Nájera, B. Fiser, E. Gómez-Bengoa. Eur. J. Org. Chem. 2614 (2015).Google Scholar

  • [78]

    P. Vizcaíno-Milla, J. M. Sansano, C. Nájera, B. Fiser, E. Gómez-Bengoa. Synthesis 47, 2199 (2015).Google Scholar

  • [79]

    A. Bañón-Caballero, G. Guillena, C. Nájera. Mini-Rev. Org. Chem. 11, 118 (2014).Google Scholar

  • [80]

    C. Lee, W. Yang, R. G. Parr. Phys. Rev. B 37, 785 (1988).Google Scholar

  • [81]

    A. D. Becke. J. Chem. Phys. 98, 5648 (1993).Google Scholar

  • [82]

    W. Kohn, A. D. Becke, R. G. Parr. J. Phys. Chem. 100, 12974 (1996).Google Scholar

  • [83]

    E. Cancés, B. Mennucci, J. Tomasi. J. Chem. Phys. 107, 3032 (1997).Google Scholar

  • [84]

    J. Tomasi, B. Mennucci, E. Cancés. J. Mol. Struct.: THEOCHEM 464, 211 (1999).Google Scholar

  • [85]

    Y. Zhao, D. G. Truhlar. Theor. Chem. Acc. 120, 215 (2008).Google Scholar

About the article

Published Online: 2016-07-28

Published in Print: 2016-06-01


Citation Information: Pure and Applied Chemistry, Volume 88, Issue 6, Pages 561–578, ISSN (Online) 1365-3075, ISSN (Print) 0033-4545, DOI: https://doi.org/10.1515/pac-2016-0403.

Export Citation

©2016 IUPAC & De Gruyter. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. For more information, please visit: http://creativecommons.org/licenses/by-nc-nd/4.0/.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Yong-Jay Lee, Kuang-Shun Liu, Chien-Chen Lai, Yi-Hung Liu, Shie-Ming Peng, Richard P. Cheng, and Sheng-Hsien Chiu
Chemistry - A European Journal, 2017, Volume 23, Number 41, Page 9756
[3]
Carmen Najera, Jose Miguel Sansano, and Enrique Gomez-Bengoa
ChemInform, 2016, Volume 47, Number 46

Comments (0)

Please log in or register to comment.
Log in