Formation of laser-induced periodic surface structures on different materials: fundamentals, properties and applications

  • 1 Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
Stephan GräfORCID iD: https://orcid.org/0000-0003-2849-1377
  • Corresponding author
  • Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena, Germany
  • orcid.org/0000-0003-2849-1377
  • Email
  • Further information
  • Stephan Gräf is a researcher and working group leader at the Otto Schott Institute for Materials Research at the Friedrich Schiller University in Jena. He received his PhD in 2010 from the Friedrich Schiller University Jena in the field of laser welding with dynamically polarised CO2 laser radiation. Within the past years his work mainly focused on the engineering of material surfaces with tailored functional properties. This includes the detailed study of laser-matter interaction with regard to different wavelengths and pulse durations as well as laser-assisted micro- and nanostructuring of surfaces, particularly the fabrication of laser-induced periodic surface structures using ultrashort pulsed laser radiation.
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

The use of ultra-short pulsed lasers enables the fabrication of laser-induced periodic surface structures (LIPSS) on various materials following a single-step, direct-writing technique. These specific, well-ordered nanostructures with periodicities in the order of the utilised laser wavelength facilitate the engineering of surfaces with functional properties. This review paper discusses the physical background of LIPSS formation on substrates with different material properties. Using the examples of structural colours, specific wetting states and the reduction of friction and wear, this work presents experimental approaches that allow to deliberately influence the LIPSS formation process and thus tailor the surface properties. Finally, the review concludes with some future developments and perspectives related to forthcoming applications of LIPSS-based surfaces are discussed.

  • [1]

    J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld and J. Krüger, IEEE J. Select. Top. Quant. Electron. 23, 9000615 (2017).

  • [2]

    F. A. Müller, C. Kunz and S. Gräf, Materials 9, 476 (2016).

  • [3]

    J. Bonse, S. V. Kirner, S. Höhm, N. Epperlein, D. Spaltmann, et al., Proc. SPIE 10092, 100920N (2017).

  • [4]

    A. Y. Vorobyev and C. Guo, Laser Photon. Rev. 7, 385–407 (2013).

  • [5]

    J. Bonse, J. Krüger, S. Höhm and A. Rosenfeld, J. Laser. Appl. 24, 042006 (2012).

  • [6]

    C. Kunz, J. F. Bartolomé, E. Gnecco, F. A. Müller and S. Gräf, Appl. Surf. Sci. 434, 582–587 (2018).

  • [7]

    C. Kunz, J. Bonse, D. Spaltmann, C. Neumann, A. Turchanin, et al., Appl. Surf. Sci. 499, 143917 (2019).

  • [8]

    F. R. Weber, C. Kunz, S. Gräf, M. Rettenmayr and F. A. Müller, Langmuir 35, 14990–14998 (2019).

  • [9]

    S. Gräf, C. Kunz, S. Engel, T. J. Y. Derrien and F. A. Müller, Materials 11, 1340 (2018).

  • [10]

    S. Gräf, C. Kunz and F. A. Müller, Materials 10, 933 (2017).

  • [11]

    E. Rebollar, J. R. V. de Aldana, I. Martin-Fabiani, M. Hernandez, D. R. Rueda, et al., Phys. Chem. Chem. Phys. 15, 11287–11298 (2013).

  • [12]

    D. C. Emmony, R. P. Howson and L. J. Willis, Appl. Phys. Lett. 23, 598–600 (1973).

  • [13]

    Z. Guosheng, P. M. Fauchet and A. E. Siegman, Phys. Rev. B 26, 5366–5381 (1982).

  • [14]

    J. E. Sipe, J. F. Young, J. S. Preston and H. M. van Driel, Phys. Rev. B 27, 1141–1154 (1983).

  • [15]

    J. F. Young, J. S. Preston, H. M. van Driel and J. E. Sipe, Phys. Rev. B 27, 1155–1172 (1983).

  • [16]

    J. F. Young, J. E. Sipe and H. M. van Driel, Phys. Rev. B 30, 2001–2015 (1984).

  • [17]

    F. Keilmann and Y. H. Bai, Appl. Phys. A Mater. Sci. Process. 29, 9–18 (1982).

  • [18]

    F. Garrelie, J. P. Colombier, F. Pigeon, S. Tonchev, N. Faure, et al., Opt. Express 19, 9035–9043 (2011).

  • [19]

    B. Rethfeld, D. S. Ivanov, M. E. Garcia and S. I. Anisimov, J. Phys. D: Appl. Phys. 50, 193001 (2017).

  • [20]

    J. Bonse, A. Rosenfeld and J. Krüger, J. Appl. Phys. 106, 104910 (2009).

  • [21]

    D. Dufft, A. Rosenfeld, S. K. Das, R. Grunwald and J. Bonse, J. Appl. Phys. 105, 034908 (2009).

  • [22]

    J. Bonse, M. Munz and H. Sturm, J. Appl. Phys. 97, 013538 (2005).

  • [23]

    G. D. Tsibidis, M. Barberoglou, P. A. Loukakos, E. Stratakis and C. Fotakis, Phys. Rev. B 86, 115316 (2012).

  • [24]

    J. P. Colombier, F. Garrelie, P. Brunet, A. Bruyere, F. Pigeon, et al., J. Laser. Micro Nanoen. 7, 362–368 (2012).

  • [25]

    E. L. Gurevich, Y. Levy, S. V. Gurevich and N. M. Bulgakova, Phys. Rev. B 95, 054305 (2017).

  • [26]

    E. L. Gurevich, Appl. Surf. Sci. 374, 56–60 (2016).

  • [27]

    E. L. Gurevich, Phys. Rev. E 83, 031604 (2011).

  • [28]

    E. B. Levchenko and A. L. Chernyakov, J. Exp. Theor. Phys. 81, 202–209 (1981).

  • [29]

    J. Reif, O. Varlamova, S. Varlamov and M. Bestehorn, Appl. Phys. A Mater. Sci. Process. 104, 969–973 (2011).

  • [30]

    O. Varlamova, F. Costache, J. Reif and M. Bestehorn, Appl. Surf. Sci. 252, 4702–4706 (2006).

  • [31]

    Q. H. Wu, Y. R. Ma, R. C. Fang, Y. Liao, Q. X. Yu, et al., Appl. Phys. Lett. 82, 1703–1705 (2003).

  • [32]

    J. Bonse, S. Höhm, A. Rosenfeld and J. Krüger, Appl. Phys. A Mater. Sci. Process. 110, 547–551 (2013).

  • [33]

    X. F. Li, C. Y. Zhang, H. Li, Q. F. Dai, S. Lan, et al., Opt. Express 22, 28086–28099 (2014).

  • [34]

    A. Borowiec and H. K. Haugen, Appl. Phys. Lett. 82, 4462–4464 (2003).

  • [35]

    R. Buividas, L. Rosa, R. Sliupas, T. Kudrius, G. Slekys, et al., Nanotechnol. 22, 055304 (2011).

  • [36]

    M. Straub, M. Afshar, D. Feili, H. Seidel and K. König, J. Appl. Phys. 111, 124315 (2012).

  • [37]

    A. Rudenko, J. P. Colombier, S. Höhm, A. Rosenfeld, J. Krüger, et al., Sci. Rep. 7, 12306 (2017).

  • [38]

    A. M. Kietzig, S. G. Hatzikiriakos and P. Englezos, Langmuir 25, 4821–4827 (2009).

  • [39]

    J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, et al., Appl. Phys. A Mater. Sci. Process. 117, 103–110 (2014).

  • [40]

    O. Varlamova, J. Reif, M. Stolz, R. Borcia, I. D. Borcia, et al., Eur. Phys. J. B 92, 91 (2019).

  • [41]

    C. Kunz, T. N. Büttner, B. Naumann, A. V. Boehm, E. Gnecco, et al., Carbon 133, 176–185 (2018).

  • [42]

    P. Bizi-bandoki, S. Valette, E. Audouard and S. Benayoun, Appl. Surf. Sci. 273, 399–407 (2013).

  • [43]

    C. Florian, J.-L. Déziel, S. V. Kirner, J. Siegel and J. Bonse, Nanomaterials 10, 147 (2020).

  • [44]

    I. Gnilitskyi, T. J. Y. Derrien, Y. Levy, N. M. Bulgakova, T. Mocek, et al., Sci. Rep. 7, 8485 (2017).

  • [45]

    S. Gräf and F. A. Müller, Appl. Surf. Sci. 331, 150–155 (2015).

  • [46]

    A. Möhl, S. Kaldun, C. Kunz, F. A. Müller, U. Fuchs, et al., J. Laser. Appl. 31, 042019 (2020).

  • [47]

    O. J. Allegre, W. Perrie, S. P. Edwardson, G. Dearden and K. G. Watkins, J. Opt. 14, 085601 (2012).

  • [48]

    E. Skoulas, A. Manousaki, C. Fotakis and E. Stratakis, Sci. Rep. 7, 45114 (2017).

  • [49]

    J. Ouyang, W. Perrie, O. J. Allegre, T. Heil, Y. Jin, et al., Opt. Express 23, 12562–12572 (2015).

  • [50]

    J. J. J. Nivas, S. T. He, A. Rubano, A. Vecchione, D. Paparo, et al., Sci. Rep. 5, 17929 (2015).

  • [51]

    B. Dusser, Z. Sagan, H. Soder, N. Faure, J. P. Colombier, et al., Opt. Express 18, 2913–2924 (2010).

  • [52]

    B. Wu, M. Zhou, J. Li, X. Ye, G. Li, et al., Sci. Rep. 6, 36296 (2016).

  • [53]

    M. Martinez-Calderon, M. Manso-Silvan, A. Rodriguez, M. Gomez-Aranzadi, J. P. Garcia-Ruiz, et al., ACS Nano 3, 4062–4070 (2009).

  • [54]

    M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu and Z. Z. Xu, ACS Nano 3, 4062–4070 (2009).

  • [55]

    A. J. Smith, C. Wang, D. Guo, C. Sun and J. Huang, Nat. Commun. 5, 5517 (2014).

  • [56]

    T. Jwad, P. Penchev, V. Nasrollahi and S. Dimov, Appl. Surf. Sci. 453, 449–456 (2018).

  • [57]

    A. H. A. Lutey, L. Gemini, L. Romoli, G. Lazzini, F. Fuso, et al., Sci. Rep. 8, 10112 (2018).

  • [58]

    U. Hermens, M. Pothen, K. Winands, K. Arntz and F. Klocke, Opt. Las. Engin. 101, 44–50 (2018).

  • [59]

    S. Schwarz, S. Rung, C. Esen and R. Hellmann, J. Laser. Micro Nanoen. 13, 90–94 (2018).

  • [60]

    L. Wang, Q. D. Chen, X. W. Cao, R. Buividas, X. W. Wang, et al., Light-Sci. Appl. 6, e17112 (2017).

  • [61]

    B. Stępak, P. Dzienny, V. Franke, P. Kunicki, T. Gotszalk, et al., Appl. Surf. Sci. 436, 682–689 (2018).

  • [62]

    E. V. Golosov, A. A. Ionin, Y. R. Kolobov, S. I. Kudryashov, A. E. Ligachev, et al., Phys. Rev. B 83, 115426 (2011).

  • [63]

    P. Feng, N. Zhang, H. Wu and X. Zhu, Opt. Lett. 40, 17–20 (2015).

  • [64]

    M. Huang, F. L. Zhao, Y. Cheng, N. S. Xu and Z. Z. Xu, Opt. Express 16, 19354–19365 (2008).

  • [65]

    R. Sajzew, J. Schröder, C. Kunz, S. Engel, F. A. Müller, et al., Opt. Lett. 40, 5734–5737 (2015).

  • [66]

    M. Huang, F. Zhao, Y. Cheng, N. Xu and Z. Xu, Opt. Express 16, 19354–19365 (2008).

  • [67]

    C. Freitag, R. Weber and T. Graf, Opt. Express 22, 1474–1479 (2014).

  • [68]

    A. C. Ferrari and D. M. Basko, Nat. Nanotechnol. 8, 235–246 (2013).

  • [69]

    J. Bonse, A. Hertwig, R. Koter, M. Weise, U. Beck, et al., Appl. Phys. A Mater. Sci. Process. 112, 9–14 (2013).

  • [70]

    P. Calvani, A. Bellucci, M. Girolami, S. Orlando, V. Valentini, et al., Appl. Phys. A Mater. Sci. Process. 117, 25–29 (2014).

  • [71]

    S. Höhm, A. Rosenfeld, J. Krüger and J. Bonse, J. Appl. Phys. 112, 014901 (2012).

  • [72]

    M. Grehn, T. Seuthe, M. Hofner, N. Griga, C. Theiss, et al., Opt. Mater. Express 4, 689–700 (2014).

  • [73]

    K. H. Sun, J. Am. Ceram. Soc. 30, 277–281 (1947).

  • [74]

    K. H. Sun and M. L. Huggins, J. Phys. Colloid Chem. 51, 438–443 (1947).

  • [75]

    V. V. Temnov, Ultrafast laser-induced phenomena in solids studied by time-resolved interferometry. PhD thesis, University of Duisburg-Essen, 2004.

  • [76]

    A. Ben-Yakar, A. Harkin, J. Ashmore, R. L. Byer and H. A. Stone, J. Phys. D: Appl. Phys. 40, 1447–1459 (2007).

  • [77]

    W. Martienssen and H. Warlimont, in ‘Springer Handbook of Condensed Matter and Materials Data’ (Springer, Heidelberg, New York, 2005).

  • [78]

    S. Gräf, G. Staupendahl, P. Gerling and F. A. Müller, J. Appl. Phys. 113, 013101 (2013).

  • [79]

    J. H. Wray and J. T. Neu, J. Opt. Soc. Am. 59, 774–776 (1969).

  • [80]

    A. Ben-Yakar, R. L. Byer, A. Harkin, J. Ashmore, H. A. Stone, et al., Appl. Phys. Lett. 83, 3030–3032 (2003).

  • [81]

    J. F. Bartolome, C. F. Gutierrez-Gonzalez and R. Torrecillas, Compos. Sci. Technol. 68, 1392–1398 (2008).

  • [82]

    C. F. Gutierrez-Gonzalez and J. F. Bartolomé, Wear 303, 211–215 (2013).

  • [83]

    C. F. Gutierrez-Gonzalez and J. F. Bartolomé, J. Mater. Res. 23, 570–578 (2008).

  • [84]

    T. J. Y. Derrien, R. Koter, J. Krüger, S. Höhm, A. Rosenfeld, et al., J. Appl. Phys. 116, 074902 (2014).

  • [85]

    S. T. Wang, K. S. Liu, X. Yao and L. Jiang, Chem. Rev. 115, 8230–8293 (2015).

  • [86]

    U. Hermens, S. V. Kirner, C. Emonts, P. Comanns, E. Skoulas, et al., Appl. Surf. Sci. 418, 499–507 (2017).

  • [87]

    G. Q. Li, J. W. Li, Y. L. Hu, C. C. Zhang, X. H. Li, et al., Appl. Phys. A Mater. Sci. Process. 118, 1189–1196 (2015).

  • [88]

    A. Y. Vorobyev and C. Guo, Appl. Phys. Lett. 92, 041914 (2008).

  • [89]

    M. S. Ahsan, F. Ahmed, Y. G. Kim, M. S. Lee and M. B. G. Jun, Appl. Surf. Sci. 257, 7771–7777 (2011).

  • [90]

    Z. G. Ou, M. Huang and F. L. Zhao, Opt. Express 22, 17254–17265 (2014).

  • [91]

    B. Dusser, E. Audouard, M. Jourlin, H. Soder and A. Foucou, “Method and device for marking a surface using controlled periodic nanostructures,” Patent No. WO/2009/090324 (2007).

  • [92]

    Z. G. Ou, M. Huang and F. L. Zhao, Opt. Laser Technol. 79, 79–87 (2016).

  • [93]

    Y. Yang, J. J. Yang, C. Y. Liang and H. S. Wang, Opt. Express 16, 11259–11265 (2008).

  • [94]

    A. Papadopoulos, E. Skoulas, A. Mimidis, G. Perrakis, G. Kenanakis, et al., Adv. Mater. 31, 1901123 (2019).

  • [95]

    A. Y. Vorobyev and C. Guo, J. Appl. Phys. 103, 043513 (2008).

  • [96]

    A. Y. Vorobyev and C. Guo, Opt. Express 19, A1031–A1036 (2011).

  • [97]

    H. D. Yang, X. H. Li, G. Q. Li, C. Wen, R. Qiu, et al., Appl. Phys. A Mater. Sci. Process. 104, 749–753 (2011).

  • [98]

    C. Kunz, F. Müller and S. Gräf, Materials 11, 789 (2018).

  • [99]

    B. K. Nayak and M. C. Gupta, Opt. Las. Engin. 48, 940–949 (2010).

  • [100]

    S. Gräf, C. Kunz, A. Undisz, R. Wonneberger, M. Rettenmayr, et al., Appl. Surf. Sci. 471, 645–651 (2019).

  • [101]

    D. Yan, C. C. Tasan and D. Raabe, Acta Mater. 96, 399–409 (2015).

  • [102]

    R. N. Wenzel, Chem. Res. 28, 988–994 (1936).

  • [103]

    M. Martinez-Calderon, A. Rodriguez, A. Dias-Ponte, M. C. Morant-Minana, M. Gomez-Aranzadi, et al., Appl. Surf. Sci. 374, 81–89 (2016).

  • [104]

    D. Y. Kwok and A. W. Neumann, Adv. Colloid Interface Sci. 81, 167–249 (1999).

  • [105]

    A. B. D. Cassie, Discuss. Faraday Soc. 3, 11–16 (1948).

  • [106]

    J. Drelich, J. L. Wilbur, J. D. Miller and G. M. Whitesides, Langmuir 12, 1913–1922 (1996).

  • [107]

    S. V. Kirner, U. Hermens, A. Mimidis, E. Skoulas, C. Florian, et al., Appl. Phys. A – Mater. Sci. Process. 123, 754 (2017).

  • [108]

    J. J. Yu and Y. F. Lu, Appl. Surf. Sci. 148, 248–252 (1999).

  • [109]

    J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, et al., Appl. Surf. Sci. 336, 21–27 (2015).

  • [110]

    J. Bonse, S. Höhm, R. Koter, M. Hartelt, D. Spaltmann, et al., Appl. Surf. Sci. 374, 190–196 (2015).

  • [111]

    N. Yasumaru, K. Miyazaki and J. Kiuchi, Appl. Surf. Sci. 254, 2364–2368 (2008).

  • [112]

    N. Yasumaru, K. Miyazaki, J. Kiuchi and E. Sentoku, Diamond Relat. Mater. 20, 542–545 (2011).

  • [113]

    J. Bonse, S. V. Kirner, M. Griepentrog, D. Spaltmann and J. Krüger, Materials 11, 801 (2018).

  • [114]

    S. V. Kirner, T. Wirth, H. Sturm, J. Krüger and J. Bonse, J. Appl. Phys. 122, 104901 (2017).

  • [115]

    S. V. Kirner, N. Slachciak, A. M. Elert, M. Griepentrog, D. Fischer, et al., Appl. Phys. A Mater. Sci. Process. 124, 326 (2018).

  • [116]

    K. Aniolek, M. Kupka, A. Barylski and G. Dercz, Appl. Surf. Sci. 357, 1419–1426 (2015).

  • [117]

    H. Hertz, Journal für die reine und angwandte Mathematik 92, 156–171 (1881).

  • [118]

    T. J. Webster and E. S. Ahn, Tissue Engineering II: Basics of Tissue Engineering and Tissue Applications 103, 275–308 (2007).

  • [119]

    S. D. Puckett, E. Taylor, T. Raimondo and T. J. Webster, Biomaterials 31, 706–713 (2010).

  • [120]

    F. Mumm, A. T. J. van Helvoort and P. Sikorski, Acs Nano 3, 2647–2652 (2009).

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Advanced Optical Technologies is a strictly peer-reviewed scientific journal. The major aim of Advanced Optical Technologies is to publish recent progress in the fields of optical design, optical engineering, and optical manufacturing. Advanced Optical Technologies has a main focus on applied research and addresses scientists as well as experts in industrial research and development.

Search