Laser interference ablation by ultrashort UV laser pulses via diffractive beam management

Jan-Hendrik Klein-Wiele 1 , Andreas Blumenstein 1 , Peter Simon 1  and Jürgen Ihlemannhttp://orcid.org/https://orcid.org/0000-0002-7527-882X 1
  • 1 Laser-Laboratorium Göttingen e.V., Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
Jan-Hendrik Klein-Wiele
  • Laser-Laboratorium Göttingen e.V., Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
  • Further information
  • Jan-Hendrik Klein-Wiele received his diploma in physics (1997) from the University of Göttingen. During his diploma, he was working at the Max-Planck-Institute for fluid dynamics in the group of Prof. Tönnies, examining ultrafast optical excitations on sodium cluster films. In 1997, he joined Laser-Laboratorium Göttingen, Germany, where he dedicated his research to the fabrication of periodic nanostructures by direct ultrashort pulse laser ablation. His work includes time-resolved studies of the ablation process, the development of sophisticated optical systems for periodic nanostructuring and the industrial and scientific applications of such structures.
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Andreas Blumenstein
  • Laser-Laboratorium Göttingen e.V., Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
  • Further information
  • Andreas Blumenstein received his B.Sc. in (2011) and M.Sc. in (2013) both in physics from the University of Göttingen. He received his Ph.D. from the University of Kassel in (2019). For his thesis, he worked at the Laser-Laboratorium Göttingen, Germany, investigating ultrashort laser pulse surface nanostructuring and the role of non-equilibrium effects on the energy absorption process. Further research interests are the creation and application of few cycle laser pulses using stretched flexible hollow core fibers.
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Peter Simon
  • Laser-Laboratorium Göttingen e.V., Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
  • Further information
  • Peter Simon received his diploma and Ph.D. degrees in Physics from the University of Szeged in 1982 and 1986, respectively. In 1988, he joined the Laser-Laboratorium Göttingen, where he participated in research associated with the generation, amplification and characterization of femtosecond laser pulses and their application for materials processing. In 1992, he was appointed as a group leader of the High Intensity Laser Technology Group and in 2005 as the Head of the Department of Ultrashort Pulse Photonics. Since 2015 he is heading the Department Short Pulses/Nanostructures. The subjects of his current research include the generation and amplification of ultrashort laser pulses, the compression of energetic few-cycle pulses and the submicron-scale surface texturing of technical materials.
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Jürgen IhlemannORCID iD: https://orcid.org/0000-0002-7527-882X
  • Corresponding author
  • Laser-Laboratorium Göttingen e.V., Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
  • orcid.org/0000-0002-7527-882X
  • Email
  • Further information
  • Jürgen Ihlemann received his diploma in physics (1984) and Ph.D. in physical chemistry (1987) from the University of Göttingen. From 1984 to 1988, he was with the the Max-Planck-Institute for biophysical chemistry, Göttingen, where he was working on picosecond laser spectroscopy. In 1989, he joined Laser-Laboratorium Göttingen, Germany, where he is now head of the nanostructure technology group. Research interests are UV laser micro- and nanomachining, patterning of surfaces and thin films and ultrashort pulse laser ablation.
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

The fabrication of periodic surface patterns on various materials by ultrashort ultraviolet (UV) laser pulses is reviewed. Laser interference ablation using two or more coherent beams leads to deterministic, strictly periodic patterns. The generation of the interfering beams is accomplished by diffractive optical elements like gratings, grating systems or computer-generated holograms. The recombination of the diffracted beams is performed by optical imaging or diffractive beam management. Ultrashort UV pulses are especially suited for generating micron- to submicron-sized deterministic periodic patterns on metals and semiconductors.

  • [1]

    J.-H. Klein-Wiele and P. Simon, Mikroproduktion 04/18, 60 (2018).

  • [2]

    J. Bekesi, J. Kaakkunen, W. Michaeli, F. Klaiber, M. Schoengart, et al., Appl. Phys. A 99, 691 (2010).

  • [3]

    S. Rung, K. Bokan, F. Kleinwort, S. Schwarz, P. Simon, et al., Lubricants 7, 43 (2019).

  • [4]

    L. Müller-Meskamp, Y. H. Kim, T. Roch, S. Hofmann, R. Scholz, et al., Adv. Mater. 24, 906 (2012).

  • [5]

    J. Bonse, S. Höhm, S. V. Kirner, A. Rosenfeld and J. Krüger, IEEE J. Sel. Top. Quant. Electron. 23, 9000615 (2017).

  • [6]

    K.J. Ilcisin and R. Fedosejevs, Appl. Opt. 26, 396 (1987).

  • [7]

    T. Lippert, T. Gerber, A. Wokaun, D. J. Funk, H. Fukumura, et al., Appl. Phys. Lett. 75, 1018 (1999).

  • [8]

    S. Pissadakis, L. Reekie, M. N. Zervas and J. S. Wilkinson, J. Appl. Phys. 95, 1634 (2004).

  • [9]

    C. Daniel, F. Mücklich and Z. Liu, Appl. Surf. Sci. 208, 317 (2003).

  • [10]

    S. Beckemper, J. Huang, A. Gillner and K. Wang, J. Laser Micro. Nanoeng. 6, 49 (2011).

  • [11]

    J. Huang, S. Beckemper, A. Gillner and K. Wang, J. Micromech. Microeng. 20, 095004 (2010).

  • [12]

    P. E. Dyer, R. J. Farley and R. Giedl, Opt. Commun. 115, 327 (1995).

  • [13]

    H. M. Phillips and R. A. Sauerbrey, Opt. Eng. 32, 2424 (1993).

  • [14]

    P. E. Dyer, R. J. Farley, R. Giedl and D. M. Karnakis, Appl. Surf. Sci. 96–98, 537 (1996).

  • [15]

    M. Mäder, T. Höche, J. W. Gerlach, R. Böhme and B. Rauschenbach, Phys. Stat. Sol. B 247, 1372 (2010).

  • [16]

    R. J. Peláez, C. N. Afonso, J. Bulíř, M. Novotný, J. Lančok, et al., Nanotechnology 24, 095301 (2013).

  • [17]

    J.-H. Klein-Wiele and P. Simon, Appl. Phys. Lett. 83, 4707 (2003).

  • [18]

    S. Indrišiūnas, B. Voisiat, M. Gedvilas and G. Račiukaitis, J. Micromech. Microeng. 23, 095034 (2013).

  • [19]

    J.-H. Klein-Wiele, T. Fricke-Begemann, P. Simon and J. Ihlemann, Opt. Expr. 27, 28902 (2019).

  • [20]

    J. Bekesi, P. Simon and J. Ihlemann, Appl. Phys. A 114, 69 (2014).

  • [21]

    J. J. J. Kaakkunen, K. Paivasaari and P. Vahimaa, Appl. Phys. A 103, 267 (2011).

  • [22]

    Y. Bourgin, S. Bakkali, Y. Jourlin, S. Tonchev and O. Parriaux, Opt. Lett. 34, 3800 (2009).

  • [23]

    P. E. Dyer, R. J. Farley, R. Giedl, C. Ragdale and D. Reid, Appl. Phys. Lett. 64, 3389 (1994).

  • [24]

    K. Tsunetomo and T. Koyama, Opt. Lett. 22, 411 (1997).

  • [25]

    B. Borchers, J. Békési, P. Simon and J. Ihlemann, J. Appl. Phys. 107, 063106 (2010).

  • [26]

    J. Kaakkunen, J. Bekesi, J. Ihlemann and P. Simon, Appl. Phys. A 101, 225 (2010).

  • [27]

    T. Kondo, S. Matsuo, S. Juodkazis, V. Mizeikis and H. Misawa, Appl. Phys. Lett. 82, 2758 (2003).

  • [28]

    J. Bekesi, S. Szatmári, P. Simon and G. Marowsky, Appl. Phys. B 75, 521 (2002).

  • [29]

    P. Simon and J. Ihlemann, Appl. Phys. A 63, 505 (1996).

  • [30]

    P. Simon and J. Ihlemann, Appl. Surf. Sci. 109/110, 25 (1997).

  • [31]

    K. Chen, J. Ihlemann, P. Simon, I. Baumann and W. Sohler, Appl. Phys. A 65, 517 (1997).

  • [32]

    F. Beinhorn, J. Ihlemann, P. Simon, G. Marowsky, B. Maisenhölder, et al., Appl. Surf. Sci. 138–139, 107 (1999).

  • [33]

    J. Ihlemann, J.-H. Klein-Wiele, J. Békési and P. Simon, J. Phys. Conf. Ser. 59, 449 (2007).

  • [34]

    G. Zito, B. Piccirillo, E. Santamato, A. Marino, V. Tkachenko, et al., Opt. Expr. 16, 5164 (2008).

  • [35]

    J. Békési, J. Meinertz, J. Ihlemann and P. Simon, Appl. Phys. A 93, 27 (2008).

  • [36]

    A. Yen, E. H. Anderson, R. A. Ghanbari, M. L. Schattenburg and H. I. Smith, Appl. Opt. 31, 4540 (1992).

  • [37]

    M. Livitziis and S. Pissadakis, Opt. Lett. 33, 1449 (2008).

  • [38]

    J. Turunen and F. Wyrowski, Diffractive optics for industrial and commercial applications (Akademie Verlag, Berlin, 1997).

  • [39]

    J. Bekesi, D. Schäfer, J. Ihlemann and P. Simon, Proc. SPIE 4977, 235 (2003).

  • [40]

    Z. Xiong, G. D. Peng, B. Wu and P. L. Chu, J. Lightwave Technol. 17, 2361 (1999).

  • [41]

    D. S. Ivanov, V. P. Lipp, A. Blumenstein, F. Kleinwort, V. P. Veiko, et al., Phys. Rev. Appl. 4, 064006 (2015).

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Advanced Optical Technologies is a strictly peer-reviewed scientific journal. The major aim of Advanced Optical Technologies is to publish recent progress in the fields of optical design, optical engineering, and optical manufacturing. Advanced Optical Technologies has a main focus on applied research and addresses scientists as well as experts in industrial research and development.

Search