Interference-based laser-induced micro-plasma ablation of glass

Sabri Alamrihttp://orcid.org/https://orcid.org/0000-0003-3722-1942 1 , Paul A. Sürmann 1 , Andrés F. Lasagni 1 , 2  and Tim Kunze 1
  • 1 Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS, Winterbergstr. 28, 01277 Dresden, Germany
  • 2 Institut für Fertigungstechnik, Technische Universität Dresden, George-Bähr-Str. 3c, 01069 Dresden, Germany
Sabri AlamriORCID iD: https://orcid.org/0000-0003-3722-1942
  • Corresponding author
  • Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS, Winterbergstr. 28, 01277 Dresden, Germany
  • orcid.org/0000-0003-3722-1942
  • Email
  • Further information
  • Sabri Alamri is a doctoral researcher in the group of Surface Functionalization at the Fraunhofer IWS (Germany), and at the Institute for Manufacturing Technology of the Technical University of Dresden since 03/2016. His main expertise is in the field of laser surface structuring, in particular Direct Laser Interference Patterning, optical design and analytical methods. Currently his research interests are focused in the fabrication of functional surfaces employing polymeric and non-metallic materials, as well as in the modelling of laser-matter interaction processes.
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Paul A. Sürmann
  • Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS, Winterbergstr. 28, 01277 Dresden, Germany
  • Further information
  • Paul A. Sürmann is a student of production engineering at the Mechanical Engineering faculty of the Technical University of Dresden since 10/2013 and is a student researcher at the Fraunhofer IWS (Germany) since 2019. His research topic focusses on the field of laser micro texturing of transparent materials surfaces with Direct Laser Interference Patterning employing direct and indirect structuring approaches.
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Andrés F. Lasagni
  • Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS, Winterbergstr. 28, 01277 Dresden, Germany
  • Institut für Fertigungstechnik, Technische Universität Dresden, George-Bähr-Str. 3c, 01069 Dresden, Germany
  • Further information
  • Andrés F. Lasagni received in 2002 his MS degree in Chemical Engineering from the Comahue National University (Argentina). From 2003 to 2005 he carried out his PhD at Saarland University (Germany) and in 2007–2008 he conducted a postdoctoral stay at the Georgia Institute of Technology and the University of Michigan. Since 2012 he is professor at the Technische Unversität Dresden (Germany). A. F. L. is author/coauthor of more than 250 publications and has been awarded with several prizes including the German High Tech Champion in Photovoltaic 2011, the Green Photonic Award and the FEMS Innovation award 2017.
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Tim Kunze
  • Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS, Winterbergstr. 28, 01277 Dresden, Germany
  • Further information
  • Tim Kunze received his MS degree in Computational Science from the TU in Chemnitz (Germany) in 2008. From 2009 to 2013 he carried out his PhD at TU Dresden (Germany) focusing on tribology simulation. In 2014, he joined the Fraunhofer Institute of Material and Beam Technology (IWS) in Dresden as a senior researcher involved in the R&D of Direct Laser Interference Patterning technology. In 2016, his contribution within the project group DLIP was awarded with the 2nd place of the ‘Berthold Leibinger Innovationspreis 2016’ (Germany). Since September 2017, Dr. Kunze leads the group surface functionalization at Fraunhofer IWS Dresden.
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

Glass is one of the most important technical surfaces for numerous applications in automotive, optical, and consumer industries. In addition, by producing textured surfaces with periodic features in the micrometre range, new functions can be created. Although laser-based methods have shown to be capable to produce structured materials in a wide amount of materials, due to its transparency large bandgap dielectrics can be only processed in a controlled manner by employing high-power ultra-short pulsed lasers, thus limiting the employable laser sources. In this article, an interference-based method for the texturing of soda-lime glass using a 15 ns pulsed (1 kHz repetition rate) infrared (1053 nm) laser is proposed, which allows fabricating different periodic patterns with micrometre resolution. This method consists on irradiating a metallic absorber (stainless steel) put in direct contact with the glass sample and inducing locally an etching process on the backside of the glass. Then, the produced plasma at the interference maxima positions leads to the local fabrication of well-defined periodic line-like and dot-like surface patterns. The produced patterns are characterised using white light interferometry and scanning electron microscopy.

  • [1]

    H. K. Raut, V. A. Ganesh, A. S. Nair and S. Ramakrishna, Energy Environ. Sci. 4, 3779 (2011).

  • [2]

    S. Chattopadhyay, Y. F. Huang, Y. J. Jen, A. Ganguly, K. H. Chen, et al., Mater. Sci. Eng. R Reports 69, 1 (2010).

  • [3]

    X. Zhang, F. Shi, J. Niu, Y. Jiang and Z. Wang, J. Mater. Chem. 18, 621 (2008).

  • [4]

    A. Grosse, M. Grewe and H. Fouckhardt, J. Micromech. Microeng. 11, 257 (2001).

  • [5]

    T. Ujiie, T. Kikuchi, T. Ichiki and Y. Horiike, Japanese J. Appl. Physics, Part 1 Regul. Pap. Short Notes Rev. Pap. 39, 3677 (2000).

  • [6]

    N. P. Bansal and R. H. Doremus, Handbook of Glass Properties (Academic Press, Inc., Orlando, Florida, 1986).

  • [7]

    Z. C. Li, Z. J. Pei and P. D. Funkenbusch, in Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 255, (2011) pp. 975–989.

  • [8]

    L. Kuna, A. Haase, F. Reil, C. Sommer, J. R. Krenn, et al., IEEE J. Sel. Top. Quantum Electron. 15, 1250 (2009).

  • [9]

    T. Matsumura, K. Young, Q. Wen, S. Hanany, H. Ishino, et al., Appl. Opt. 55, 3502 (2016).

  • [10]

    D. Wortmann, J. Gottmann, N. Brandt and H. Horn-Solle, in 2008 Conf. Quantum Electron. Laser Sci. Conf. Lasers Electro-Optics, CLEO/QELS (2008).

  • [11]

    S. Juodkazis, SPIE Newsroom 510 (2007). Available at: https://www.researchgate.net/profile/Saulius_Juodkazis/publication/249515811_Forming_tiny_3D_structures_for_micro-_and_nanofluidics/links/5597f7f308ae99aa62ca1b36.pdf.

  • [12]

    S. Venkataraj, J. Wang, P. Vayalakkara and A. G. Aberle, IEEE J. Photovoltaics 3, 605 (2013).

  • [13]

    S. Franssila, Introduction to Microfabrication (John Wiley & Sons, Ltd., Chichester, UK, 2010).

  • [14]

    M. Rothschild, in Conf. Lasers Electro-Optics Eur. - Tech. Dig. 6 (IEEE Cat. No. 98CH36178), 122 (1998).

  • [15]

    T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H.-J. Fuchs, et al., Appl. Opt. 42, 6934 (2003).

  • [16]

    T. Ito and S. Okazaki, Nature 406, 1027 (2000).

  • [17]

    D. Bäuerle, Laser Processing and Chemistry (Springer Science & Business Media, Heidelberg, 2013).

  • [18]

    J. Ihlemann, B. Wolff and P. Simon, Appl. Phys. A Solids Surfaces 54, 363 (1992).

  • [19]

    J. Ihlemann and B. Wolff-Rottke, Appl. Surf. Sci. 106, 282 (1996).

  • [20]

    D. Du, X. Liu, G. Korn, J. Squier and G. Mourou, Appl. Phys. Lett. 64, 3071 (1994).

  • [21]

    R. Stoian, M. Boyle, A. Thoss, A. Rosenfeld, G. Korn, et al., Appl. Phys. Lett. 80, 353 (2002).

  • [22]

    A. Rosenfeld, M. Rohloff, S. Höhm, J. Krüger and J. Bonse, Appl. Surf. Sci. 258, 9233–9236 (2012).

  • [23]

    S. Gräf, C. Kunz and F. A. Müller, Materials 9, 476 (2016).

  • [24]

    J. Bonse, S. V. Kirner, S. Höhm, N. Epperlein, D. Spaltmann, et al., Laser-based Micro- Nanoprocessing XI 10092, 100920N (2017).

  • [25]

    I. Gnilitskyi, T. J. Y. Derrien, Y. Levy, N. M. Bulgakova, T. Mocek, et al., Sci. Rep. 7, 1 (2017).

  • [26]

    H. Niino, Y. Yasui, X. Ding, A. Narazaki, T. Sato, et al., J. Photochem. Photobiol. A Chem. 158, 179 (2003).

  • [27]

    T. Sato, R. Kurosaki, Y. Kawaguchi, A. Narazaki and H. Niino, J. Laser Micro Nanoeng. 5, 256 (2010).

  • [28]

    H. Niino, Y. Kawaguchi, T. Sato, A. Narazaki, T. Gumpenberger, et al., J. Phys. Conf. Ser. 59, 539 (2007).

  • [29]

    K. Zimmer, R. Böhme and B. Rauschenbach, Appl. Phys. A 79, 1883 (2004).

  • [30]

    K. Zimmer, R. Böhme, D. Ruthe and B. Rauschenbach, Appl. Phys. A 84, 455 (2006).

  • [31]

    K. Zimmer, R. Böhme, D. Hirsch and B. Rauschenbach, J. Phys. D. Appl. Phys. 39, 4651 (2006).

  • [32]

    J. Wang, H. Niino and A. Yabe, Appl. Phys. A Mater. Sci. Process. 69, S271–S273 (1999).

  • [33]

    O. M. Zhigalina, D. N. Khmelenin, A. V. Atanova, N. V. Minaev, A. P. Sviridov, et al., Plasmonics 1, 1–10 (2019).

  • [34]

    M. Y. Tsvetkov, V. I. Yusupov, P. S. Timashev, K. M. Golant, N. V. Minaev, et al., Nanotechnol. Russ. 12, 86 (2017).

  • [35]

    P. Lorenz, M. Ehrhardt and K. Zimmer, Appl. Surf. Sci. 258, 9742 (2012).

  • [36]

    J. Zhang, K. Sugioka and K. Midorikawa, Appl. Phys. A Mater. Sci. Process. 67, 545 (1998).

  • [37]

    V. A. Shkuratova, G. K. Kostyuk, M. M. Sergeev, R. A. Zakoldaev and E. B. Yakovlev, Opt. Mater. Express 9, 2392 (2019).

  • [38]

    R. Fabbro, J. Fournier, P. Ballard, D. Devaux and J. Virmont, J. Appl. Phys. 68, 775 (1990).

  • [39]

    V. P. Veiko, S. A. Volkov, R. A. Zakoldaev, M. M. Sergeev, A. A. Samokhvalov, et al., Quantum Electron. 47, 842 (2017).

  • [40]

    Y. Hanada, K. Sugioka and K. Midorikawa, in High-Power Laser Ablation VI, 6261 (2006) p. 626111.

  • [41]

    Y. Hanada, K. Sugioka, Y. Gomi, H. Yamaoka, O. Otsuki, et al., Appl. Phys. A Mater. Sci. Process 79, 1001–1003 (2004).

  • [42]

    T. Smausz, T. Csizmadia, N. Kresz, C. Vass, Z. Márton, et al., Appl. Surf. Sci. 254, 1091 (2007).

  • [43]

    A. H. Hamdani, W. Ahmed, A. Ansar, R. Akhter, W. A. Farooq, et al., Key Eng. Mater. 442, 172 (2010).

  • [44]

    A. H. Hamdani, A. Nasir, S. Sarwar, A. Ansar, R. Akhter, et al., J. Phys. Conf. Ser. 439, 1 (2013).

  • [45]

    Y. Hanada, K. Sugioka, H. Takase, H. Takai, I. Miyamoto, et al., Appl. Phys. A Mater. Sci. Process. 80, 111 (2005).

  • [46]

    H. Chao, L. Furong, W. Min, Y. Jianwen and C. Jimin, J. Laser Appl. 24, 022005 (2012).

  • [47]

    J. Zhang, K. Sugioka and K. Midorikawa, Opt. Lett. 23, 1486 (1998).

  • [48]

    Y. Nakata, Adv. Opt. Techn. 2, 2–6 (2016).

  • [49]

    B. Voisiat, M. Gedvilas, S. Indrišiunas and G. Raciukaitis, J. Laser Micro Nanoeng. 6, 185 (2011).

  • [50]

    B. Voisiat, M. Gedvilas, S. Indrišinas and G. Račiukaitis, Phys. Procedia 12, 116 (2011).

  • [51]

    J. Bekesi, J. Meinertz, J. Ihlemann and P. Simon, Appl. Phys. A Mater. Sci. Process. 93, 27 (2008).

  • [52]

    J. H. Klein-Wiele and P. Simon, Appl. Phys. Lett. 83, 4707 (2003).

  • [53]

    J. Bekesi, P. Simon and J. Ihlemann, Appl. Phys. A Mater. Sci. Process. 114, 69 (2014).

  • [54]

    A. Fernandez and D. W. Phillion, Appl. Opt. 37, 473 (1998).

  • [55]

    C. Vass, K. Osvay, T. Véso, B. Hopp and Z. Bor, Appl. Phys. A Mater. Sci. Process. 93, 69 (2008).

  • [56]

    B. Kiss, F. Ujhelyi, Á. Sipos, B. Farkas, P. Dombi, et al., J. Laser Micro Nanoeng. 8, 271 (2013).

  • [57]

    L. M. Cabalin and J. J. Laserna, Spectrochim. acta, Part B At. Spectrosc. 53, 723 (1998).

  • [58]

    A. E. Hussein, P. K. Diwakar, S. S. Harilal and A. Hassanein, J. Appl. Phys. 113, 143305 (2013).

  • [59]

    A. I. Aguilar-morales, S. Alamri, T. Kunze and A. F. Lasagni, Opt. Laser Technol. 107, 216 (2018).

  • [60]

    J. M. Liu, Opt. Lett. 7, 196 (1982).

  • [61]

    S. Alamri, A. I. Aguilar-Morales and A. F. Lasagni, Eur. Polym. J. 99, 27 (2018).

  • [62]

    S. Alamri and A. F. Lasagni, Opt. Express 25, 9603 (2017).

  • [63]

    S. Palanco, J. J. Laserna and J. M. Baena, Spectrochim. Acta – Part B At. Spectrosc. 57, 591 (2002).

  • [64]

    V. Veiko, Y. Karlagina, M. Moskvin, V. Mikhailovskii, G. Odintsova, et al., Opt. Lasers Eng. 96, 63 (2017).

  • [65]

    D. P. Adams, V. C. Hodges, D. A. Hirschfeld, M. A. Rodriguez, J. P. McDonald, et al., Surf. Coatings Technol. 222, 1 (2013).

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Advanced Optical Technologies is a strictly peer-reviewed scientific journal. The major aim of Advanced Optical Technologies is to publish recent progress in the fields of optical design, optical engineering, and optical manufacturing. Advanced Optical Technologies has a main focus on applied research and addresses scientists as well as experts in industrial research and development.

Search