Ultrafast laser micro-nano structured superhydrophobic teflon surfaces for enhanced SERS detection via evaporation concentration

Xinyu Hu 1 , Rui Panhttp://orcid.org/https://orcid.org/0000-0001-7477-5093 1 , Mingyong Cai 1 , Weijian Liu 1 , Xiao Luo 1 , Changhao Chen 1 , Guochen Jiang 1  and Minlin Zhong 1
  • 1 Laser Material Processing Research Center, School of Materials Science and Engineering, Tsinghua University, Beijing, China
Xinyu Hu
  • Laser Material Processing Research Center, School of Materials Science and Engineering, Tsinghua University, Beijing, China
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Rui PanORCID iD: https://orcid.org/0000-0001-7477-5093, Mingyong Cai
  • Laser Material Processing Research Center, School of Materials Science and Engineering, Tsinghua University, Beijing, China
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Weijian Liu
  • Laser Material Processing Research Center, School of Materials Science and Engineering, Tsinghua University, Beijing, China
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Xiao Luo
  • Laser Material Processing Research Center, School of Materials Science and Engineering, Tsinghua University, Beijing, China
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Changhao Chen
  • Laser Material Processing Research Center, School of Materials Science and Engineering, Tsinghua University, Beijing, China
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Guochen Jiang
  • Laser Material Processing Research Center, School of Materials Science and Engineering, Tsinghua University, Beijing, China
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Minlin Zhong
  • Corresponding author
  • Laser Material Processing Research Center, School of Materials Science and Engineering, Tsinghua University, Beijing, China
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

Evaporation concentration of target analytes dissolved in a water droplet based on superhydrophobic surfaces could be able to break the limits for sensitive trace substance detection techniques (e.g. SERS) and it is promising in the fields such as food safety, eco-pollution, and bioscience. In the present study, polytetrafluoroethylene (PTFE) surfaces were processed by femtosecond laser and the corresponding processing parameter combinations were optimised to obtain surfaces with excellent superhydrophobicity. The optimal parameter combination is: laser power: 6.4 W; scanning spacing: 40 μm; scanning number: 1; and scanning path: 90 degree. For trapping and localising droplets, a tiny square area in the middle of the surface remained unprocessed for each sample. The evaporation and concentration processes of droplets on the optimised surfaces were performed and analyzed, respectively. It is shown that the droplets with targeted solute can successfully collect all solute into the designed trapping areas during evaporation process on our laser fabricated superhydrophobic surface, resulting in detection domains with high solute concentration for SERS characterisation. It is shown that the detected peak intensity of rhodamine 6G with a concentration of 10−6m in SERS characterisation can be obviously enhanced by one or two orders of magnitude on the laser fabricated surfaces compared with that of the unprocessed blank samples.

  • [1]

    P. Fan, B. Bai, G. Jin, H. Zhang and M. Zhong, Appl. Surf. Sci. 457, 991–999 (2018).

  • [2]

    K. M. Tanvir Ahmmed, J. Montagut and Anne-Marie Kietzig, Can. J. Chem. Eng. 95, 1934–1942 (2017).

  • [3]

    W. Liu, P. Fan, M. Yong, X. Luo, C. Chen, et al., Nanoscale 11, 8940 (2019).

  • [4]

    Y. Y. Yan, N. Gao and W. Barthlott, Adv Colloid Interface Sci. 169, 80–105 (2011).

  • [5]

    P. Papadopoulos, L, Mammen, X. Deng, D. Vollmer and H. Butt, Proc. Natl. Acad. Sci. U.S.A 110, 3254–3258 (2013).

  • [6]

    H. Kusumaatmaja, M. L. Blow, A. Dupuis and J. M. Yeomans, EPL 81, 36003 (2008).

  • [7]

    R. K. Annavarapu, S. Kim, M. Wang, A. J. Hart and H. Sojoudi, Sci. Rep. 9, 405 (2019).

  • [8]

    R. G. Picknett and R. Bexon, J. Colloid Interface Sci. 61, 336–350 (1977).

  • [9]

    G. Mchale, S. Aqil, N. J. Shirtcliffe, M. I. Newton and H. Y. Erbil, Langmuir 21, 11053–11060 (2005).

  • [10]

    H. Gelderblom, Á. G. Marin, H. Nair, A. van Houselt, L. Letterts, et al., Phys. Rev. E 83, 026306 (2011).

  • [11]

    S. A. Kulinich and M. Farzaneh, Appl. Surf. Sci. 255, 4056–4060 (2009).

  • [12]

    B. J. Zhang, K. J. Kim and C. Y. Lee, Exp. Therm. Fluid Sci. 96, 216–223 (2018).

  • [13]

    Y. Yamada and A. Horibe, Phys. Rev. E 97, 043113 (2018).

  • [14]

    S. Dash and S. V. Garimella, Langmuir 29, 10785–10795 (2013).

  • [15]

    Y. Gao, N. Yang, T. You, C. Zhang and P. Yin, Sens. Actuators, B: Chem. 267, 129–135 (2018).

  • [16]

    F. Guo, H. Yang, J. Mao, J. Huang, X. Wang, et al., Compos. Commun. 10, 151–156 (2018).

  • [17]

    Y. Song, T. Xu, L-P. Xu and X. Zhang, Nanoscale 10, 20990–20994 (2018).

  • [18]

    Y. Zhang, C. Yang, B. Xue, Z. Peng, Z. Cao, et al., Sci. Rep. 8, 898 (2018).

  • [19]

    Y. Wang, M. Wang, L. Shen, Y. Zhu, X. Sun, et al., Chin. Phys. B 27, 17801–017801 (2018).

  • [20]

    G. C. Shi, M. L. Wang, Y. Y. Zhu, L. Shen, W. L. Ma, et al., Sci. Rep. 8, 6916 (2018).

  • [21]

    S. Y. Chou, C. C. Yu, Y. T. Yen, K. T. Lin, H. L. Chen, et al., Anal. Chem. 87, 6017–6024 (2015).

  • [22]

    F. Gentile, G. Das, M. L. Coluccio, F. Mecarini, A. Accardo, et al., Microelectron. Eng. 87, 798–801 (2010).

  • [23]

    F. Gentile, M. L. Coluccio, E. Rodanina, S. Santoreillo, D. Di Mascolo, et al., Microelectron. Eng. 111, 272–276 (2013).

  • [24]

    A. Milionis, D. Fragouli, L. Martiradonna, G. C. Anyfantis, P. Davide Cozzoli, et al., ACS Appl. Mater. Interfaces 6, 1036–1043 (2014).

  • [25]

    W. Song, D. Psaltis and K. B. Crozier, Lab. Chip 14, 3907–3911 (2014).

  • [26]

    F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, et al., Nat. Photonics 5, 682–687 (2011).

  • [27]

    J. E. George, V. K. Unnikrishnan, D. Mathur, S. Chidangil and S. D. George, Sens. Actuators, B. Chem. 272, 485–493 (2018).

  • [28]

    F. Chu, S. Yan, J. Zheng, H. Zhang, K. Yu, et al., NRL 13, 244 (2018).

  • [29]

    A. Zhizhchenko, A. Kuchmizhak, O. Vitrik, Y. Kulchin and S. Juodkazis, Nanoscale 10, 21414–21424 (2018).

  • [30]

    R. D. Deegan, O. Bakajin, T. F. Dupont, G. Huber, S. R. Nagel, et al., Nature 389, 827–829 (1997).

  • [31]

    E. C. Le Ru, E. Blackie, M. Meyer and P. G. Etchegoin, J. Phys. Chem. C 111, 13794–13803 (2007).

  • [32]

    Y. Fang and Y. Huang, Appl. Phys. Lett. 102, 153108 (2013).

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Advanced Optical Technologies is a strictly peer-reviewed scientific journal. The major aim of Advanced Optical Technologies is to publish recent progress in the fields of optical design, optical engineering, and optical manufacturing. Advanced Optical Technologies has a main focus on applied research and addresses scientists as well as experts in industrial research and development.

Search