Porins as helpers in mitochondrial protein translocation

  • 1 Institute of Biochemistry und Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
  • 2 Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
  • 3 CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
Alexander Grevel
  • Institute of Biochemistry und Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
  • Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Thomas BeckerORCID iD: https://orcid.org/0000-0002-1138-5263
  • Corresponding author
  • Institute of Biochemistry und Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
  • CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
  • orcid.org/0000-0002-1138-5263
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

Mitochondria import the vast majority of their proteins via dedicated protein machineries. The translocase of the outer membrane (TOM complex) forms the main entry site for precursor proteins that are produced on cytosolic ribosomes. Subsequently, different protein sorting machineries transfer the incoming preproteins to the mitochondrial outer and inner membranes, the intermembrane space, and the matrix. In this review, we highlight the recently discovered role of porin, also termed voltage-dependent anion channel (VDAC), in mitochondrial protein biogenesis. Porin forms the major channel for metabolites and ions in the outer membrane of mitochondria. Two different functions of porin in protein translocation have been reported. First, it controls the formation of the TOM complex by modulating the integration of the central receptor Tom22 into the mature translocase. Second, porin promotes the transport of carrier proteins toward the carrier translocase (TIM22 complex), which inserts these preproteins into the inner membrane. Therefore, porin acts as a coupling factor to spatially coordinate outer and inner membrane transport steps. Thus, porin links metabolite transport to protein import, which are both essential for mitochondrial function and biogenesis.

  • Abe, Y., Shodai, T., Muto, T., Mihara, K., Torii, H., Nishikawa, S., Endo, T., and Kohda, D. (2000). Structural basis of presequence recognition by the mitochondrial protein import receptor Tom20. Cell 100, 551–560.

    • Crossref
    • PubMed
    • Export Citation
  • Ahting, U., Thun, C., Hegerl, R., Typke, D., Nargang, F.E., Neupert, W., and Nussberger, S. (1999). The TOM core complex: the general protein import pore of the outer membrane of mitochondria. J. Cell Biol. 147, 959–968.

    • Crossref
    • PubMed
    • Export Citation
  • Ahting, U., Thieffry, M., Engelhardt, H., Hegerl, R., Neupert, W., and Nussberger, S. (2001). Tom40, the pore-forming component of the protein-conducting TOM channel in the outer membrane of mitochondria. J. Cell Biol. 153, 1151–1160.

    • Crossref
    • PubMed
    • Export Citation
  • Alconada, A., Kübrich, M., Moczko, M., Hönlinger, A., and Pfanner, N. (1995). The mitochondrial receptor complex: the small subunit Mom8b/Isp6 supports association of receptors with the general insertion pore and transfer of preproteins. Mol. Cell Biol. 15, 6196–6205.

    • Crossref
    • PubMed
    • Export Citation
  • Araiso, Y., Tsutsumi, A., Qiu, J., Imai, K., Shiota, T., Song, J., Lindau, C., Wenz, L.S., Sakaue, H., Yunoki, K., et al. (2019). Structure of the mitochondrial import gate reveals distinct preprotein paths. Nature 575, 395–401.

    • PubMed
    • Export Citation
  • Backes, S., Hess, S., Boos, F., Woellhaf, M.W., Gödel, S., Jung, M., Mühlhaus, T., and Herrmann, J.M. (2018). Tom70 enhances mitochondrial preprotein import efficiency by binding to internal targeting sequences. J. Cell Biol. 217, 1369–1382.

    • Crossref
    • PubMed
    • Export Citation
  • Baker, M.J., Frazier, A.E., Gulbis, J.M., and Ryan, M.T. (2007). Mitochondrial protein-import machinery: correlating structure with function. Trends Cell Biol. 17, 456–464.

    • Crossref
    • PubMed
    • Export Citation
  • Bausewein, T., Mills, D.J., Langer, J.D., Nitschke, B., Nussberger, S., and Kühlbrandt, W. (2017). Cryo-EM structure of the TOM core complex from Neurospora crassa. Cell 170, 693–700.

    • Crossref
    • PubMed
    • Export Citation
  • Bausewein, T., Naveed, H., Liang, J., and Nussberger, S. (2020). The structure of the TOM core complex in the mitochondrial outer membrane. Biol. Chem. 401. [Epub ahead of print].

    • PubMed
    • Export Citation
  • Bayrhuber, M., Meins, T., Habeck, M., Becker, S., Villinger, S., Vonrhein, C., Griesinger, C., Zweckstetter, M., and Zeth, K. (2008). Structure of the human voltage-dependent anion channel. Proc. Natl. Acad. Sci. U.S.A. 105, 15370–15375.

    • Crossref
    • PubMed
    • Export Citation
  • Becker, T. and Wagner, T. (2018). Mitochondrial outer membrane channels: emerging diversity in transport processes. Bioassays 40, e1800013.

    • Crossref
    • Export Citation
  • Becker, L., Bannwarth, M., Meisinger, C., Hill, K., Model, K., Krimmer, T., Casadio, R., Truscott, K.N., Schulz, G.E., Pfanner, N., et al. (2005). Preprotein translocase of the outer mitochondrial membrane: reconstituted Tom40 forms a characteristic TOM pore. J. Mol. Biol. 353, 1011–1020.

    • Crossref
    • PubMed
    • Export Citation
  • Becker, T., Guiard, B., Thornton, N., Zufall, N., Stroud, D.A., Wiedemann, N., and Pfanner, N. (2010). Assembly of the mitochondrial protein import channel: role of Tom5 in two-stage interaction of Tom40 with the SAM complex. Mol. Biol. Cell 21, 3106–3113.

    • Crossref
    • PubMed
    • Export Citation
  • Becker, T., Wenz, L.S., Thornton, N., Stroud, D., Meisinger, C., Wiedemann, N., and Pfanner, N. (2011). Biogenesis of mitochondria: dual role of Tom7 in modulating assembly of the preprotein translocase of the outer membrane. J. Mol. Biol. 405, 113–124.

    • Crossref
    • PubMed
    • Export Citation
  • Becker, T., Song, J., and Pfanner, N. (2019). Versatility of preprotein transfer from the cytosol to mitochondria. Trends Cell Biol. 29, 534–548.

    • Crossref
    • PubMed
    • Export Citation
  • Blachly-Dyson, E., Peng, S., Colombini, M., and Forte, M. (1990). Selectivity changes in site-directed mutants of the VDAC ion channel: structural implications. Science 247, 1233–1236.

    • Crossref
    • PubMed
    • Export Citation
  • Blachly-Dyson, E., Song, J., Wolfgang, W.J., Colombini, M., and Forte, M. (1997). Multicopy suppressors of phenotypes resulting from the absence of yeast VDAC encode a VDAC-like protein. Mol. Cell. Biol. 17, 5727–5738.

    • Crossref
    • PubMed
    • Export Citation
  • Brix, J., Dietmeier, K., and Pfanner, N. (1997). Differential recognition of preproteins by the purified cytosolic domains of the mitochondrial import receptors Tom20, Tom22, and Tom70. J. Biol. Chem. 272, 20730–20735.

    • Crossref
    • PubMed
    • Export Citation
  • Callegari, S., Richter, F., Chojnacka, K., Jans, D.C., Lorenzi, I., Pacheu-Grau, D., Jakobs, S., Lenz, C., Urlaub, H., Dudek, J., et al. (2016). TIM29 is a subunit of the human carrier translocase required for protein transport. FEBS Letters 590, 4147–4158.

    • Crossref
    • PubMed
    • Export Citation
  • Callegari, S., Müller, T., Schulz, C., Lenz, C., Jans, D.C., Wissel, M., Opazo, F., Rizozoli, S.O., Jakobs, S., Urlaub, H., et al. (2019). A MICOS-TIM22 association promotes carrier import into human mitochondria. J. Mol. Biol. 431, 2835–2851.

    • Crossref
    • PubMed
    • Export Citation
  • Campo, M.L., Peixoto, P.M., and Martinez-Caballero, S. (2017). Revisiting trends on mitochondrial mega-channels for the import of proteins and nucleic acids. J. Bioenerg. Biomembr. 49, 75–99.

    • Crossref
    • PubMed
    • Export Citation
  • Chacinska, A., Lind, M., Frazier, A.E., Dudek, J., Meisinger, C., Geissler, A., Sickmann, A., Meyer, H.E., Truscott, K.N., Guiard, B., et al. (2005). Mitochondrial presequence translocase: switching between TOM tethering and motor recruitment involves Tim21 and Tim17. Cell 120, 817–829.

    • Crossref
    • PubMed
    • Export Citation
  • Chan, N.C. and Lithgow, T. (2008). The peripheral membrane subunits of the SAM complex function codependently in mitochondrial outer membrane biogenesis. Mol. Biol. Cell 19, 126–136.

    • Crossref
    • PubMed
    • Export Citation
  • Colombini, M. (2012). Mitochondrial outer membrane channels. Chem. Rev. 112, 6373–6387.

    • Crossref
    • PubMed
    • Export Citation
  • Dekker, P.J.T., Ryan, M.T., Brix, J., Müller, H., Hönlinger, A., andPfanner, N. (1998). Preprotein translocase of the outer mitochondrial membrane: molecular dissection and assembly of the general import pore complex. Mol. Cell Biol. 18, 6515–6524.

    • Crossref
    • PubMed
    • Export Citation
  • Dienhart, M.K. and Stuart, R.A. (2008). The yeast Aac2 protein exists in physical association with the cytochrome bc1-COX supercomplex and the TIM23 machinery. Mol. Biol. Cell. 19, 3934–3943.

    • Crossref
    • PubMed
    • Export Citation
  • Dukanovic, J., Dimmer, K.S., Bonnefoy, N., Krumpe, K., andRapaport, D. (2009). Genetic and functional interactions between the mitochondrial outer membrane proteins Tom6 and Sam37. Mol. Cell. Biol. 29, 5975–5988.

    • Crossref
    • PubMed
    • Export Citation
  • Ellenrieder, L., Opaliński, Ł., Becker, L., Krüger, V., Mirus, O., Straub, S.P., Ebell, K., Flinner, N., Stiller, S.B., Guiard, B., et al. (2016). Separating mitochondrial protein assembly and endoplasmic reticulum tethering by selective coupling of Mdm10. Nat. Commun. 7, 13021.

    • Crossref
    • PubMed
    • Export Citation
  • Ellenrieder, L., Dieterle, M.P., Doan, K.N., Mårtensson, C.U.,Floerchinger, A., Campo, M.L., Pfanner, N., and Becker, T. (2019). Dual role of mitochondrial porin in metabolite transport across the outer membrane and protein transfer to the inner membrane. Mol. Cell 73, 1056–1065.

    • Crossref
    • PubMed
    • Export Citation
  • Endo, T., Yamano, K., and Kawano, S. (2011). Structural insight into the mitochondrial protein import system. Biochim. Biophys. Acta 1808, 955–970.

    • Crossref
    • PubMed
    • Export Citation
  • Esaki, M., Shimizu, H., Ono, T., Yamamoto, H., Kanamori, T.,Nishikawa, S.I., and Endo, T. (2004). Mitochondrial protein import. Requirement of presequence elements and TOM components for precursor binding to the TOM complex. J. Biol. Chem. 279, 45701–45707.

    • Crossref
    • PubMed
    • Export Citation
  • Flinner, N., Ellenrieder, L., Stiller, S.B., Becker, T., Schleiff, E., and Mirus, O. (2013). Mdm10 is an ancient eukaryotic porin co-occurring with the ERMES complex. Biochim. Biophys. Acta. 1833, 3314–3325.

    • Crossref
    • PubMed
    • Export Citation
  • Gabriel, K., Egan, B., and Lithgow, T. (2003). Tom40, the import channel of the mitochondrial outer membrane, plays an active role in sorting imported proteins. EMBO J. 22, 2380–2386.

    • Crossref
    • PubMed
    • Export Citation
  • Gebert, N., Chacinska, A., Wagner, R., Guiard, B., Koehler, C.M., Rehling, P., Pfanner, N., and Wiedemann, N. (2008). Assembly of the three small Tim proteins precedes docking to the mitochondrial carrier translocase. EMBO Rep. 9, 548–554.

    • Crossref
    • Export Citation
  • Gebert, N., Gebert, M., Oeljeklaus, S., von der Malsburg, K., Stroud, D.A., Kulawiak, B., Wirth, C., Zahedi, R.P., Dolezal, P., Wiese, S., et al. (2011). Dual function of Sdh3 in the respiratory chain and TIM22 protein translocase of the mitochondrial inner membrane. Mol. Cell 44, 811–818.

    • Crossref
    • PubMed
    • Export Citation
  • Gerbeth, C., Schmidt, O., Rao, S., Harbauer, A.B., Mikropoulou, D., Opalińska, M., Guiard, B., Pfanner, N., and Meisinger, C. (2013). Glucose-induced regulation of protein import receptor Tom22 by cytosolic and mitochondria-bound kinases. Cell Metab. 18, 578–587.

    • Crossref
    • PubMed
    • Export Citation
  • González Montoro, A., Auffarth, K., Hönscher, C., Bohnert, M., Becker, T., Warscheid, B., Reggiori, F., van der Laan, M., Fröhlich, F., and Ungermann, C. (2018). Vps39 interacts with Tom40 to establish one of two functionally distinct vacuole-mitochondria contact sites. Dev. Cell 45, 621–636.

    • Crossref
    • PubMed
    • Export Citation
  • Gornicka, A., Bragoszewski, P., Chroscicki, P., Wenz, L.S., Schulz, C., Rehling, P., and Chacinska, A. (2014). A discrete pathway for the transfer of intermembrane space proteins across the outer membrane of mitochondria. Mol. Biol. Cell 25, 3999–4009.

    • Crossref
    • PubMed
    • Export Citation
  • Grevel, A., Pfanner, N., and Becker, T. (2019). Coupling of import and assembly pathways in mitochondrial biogenesis. Biol. Chem. 401, 117–129.

    • Crossref
    • PubMed
    • Export Citation
  • Hansen, K.G. and Herrmann, J.M. (2019). Transport of proteins into mitochondria. Protein J. 38, 330–342.

    • Crossref
    • PubMed
    • Export Citation
  • Hansen, K.G., Aviram, N., Laborenz, J., Bibi, C., Meyer, M., Spang, A., Schuldiner, M., and Herrmann, J.M. (2018). An ER surface retrieval pathway safeguards the import of mitochondrial membrane proteins in yeast. Science 361, 1118–1122.

    • Crossref
    • PubMed
    • Export Citation
  • Harbauer, A.B., Opalińska, M., Gerbeth, C., Herman, J.S., Rao, S., Schönfisch, B., Guiard, B., Schmidt, O., Pfanner, N., and Meisinger, C. (2014). Cell cycle-dependent regulation of mitochondrial preprotein translocase. Science 346, 1109–1113.

    • Crossref
    • PubMed
    • Export Citation
  • Hill, K., Model, K., Ryan, M.T., Dietmeier, K., Martin, F., Wagner, R., and Pfanner, N. (1998). Tom40 forms the hydrophilic channel of the mitochondrial import pore for preproteins. Nature 395, 516–521.

    • Crossref
    • PubMed
    • Export Citation
  • Hiller, S., Garces, R.G., Malia, T.J., Orekhov, V.Y., Colombini, M., and Wagner, G. (2008). Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321, 1206–1210.

    • Crossref
    • PubMed
    • Export Citation
  • Höhr, A.I.C., Lindau, C., Wirth, C., Qiu, J., Stroud, D.A., Kutik, S., Guiard, B., Hunte, C., Becker, T., Pfanner, N., et al. (2018). Membrane protein insertion through a mitochondrial β-barrel gate. Science 359, eaah6834.

    • Crossref
    • PubMed
    • Export Citation
  • Hoppins, S.C. and Nargang, F.E. (2004). The Tim8-Tim13 complex of Neurospora crassa functions in the assembly of proteins into both mitochondrial membranes. J. Biol. Chem. 279, 12396–12405.

    • Crossref
    • PubMed
    • Export Citation
  • Kang, Y., Baker, M.J., Liem, M., Louber, J., McKenzie, M.,Atukorala, I., Ang, C.S., Keerthikumar, S., Mathivanan, S., and Stojanovski, D. (2016). Tim29 is a novel subunit of the human TIM22 translocase and is involved in complex assembly and stability. eLife 5, e17463

    • Crossref
    • PubMed
    • Export Citation
  • Kang, Y., Stroud, D.A., Baker, M.J., De Souza, D.P., Frazier, A.E., Liem, M., Tull, D., Mathivanan, S., McConville, M.J., Thorburn, D.R., et al. (2017). Sengers syndrome-associated mitochondrial acylglycerol kinase is a subunit of the human TIM22 protein import complex. Mol. Cell 67, 457–475.

    • Crossref
    • PubMed
    • Export Citation
  • Kerscher, O., Holder, J., Srinivasan, M., Leung, R.S., and Jensen, R.E. (1997). The Tim54p-Tim22p complex mediates insertion of proteins into the mitochondrial inner membrane. J. Cell Biol. 139, 1663–1675.

    • Crossref
    • PubMed
    • Export Citation
  • Kovermann, P., Truscott, K.N., Guiard, B., Rehling, P., Sepuri, N.B., Müller, H., Jensen, R.E., Wagner, R., and Pfanner, N. (2002). Tim22, the essential core of the mitochondrial protein insertion complex, forms a voltage-activated and signal-gated channel. Mol. Cell 9, 363–373.

    • Crossref
    • PubMed
    • Export Citation
  • Krüger, V., Becker, T., Becker, L., Montilla-Martinez, M., Ellenrieder, L., Vögtle, F.N., Meyer, H.E., Ryan, M.T., Wiedemann, N., Warscheid, B., et al. (2017). Identification of new channels by systematic analysis of the mitochondrial outer membrane. J. Cell Biol. 216, 3485–3495.

    • Crossref
    • PubMed
    • Export Citation
  • Künkele, K.P., Heins, S., Dembowski, M., Nargang, F.E., Benz, R., Thieffry, M., Walz, J., Lill, R., Nussberger, S., and Neupert, W. (1998). The preprotein translocation channel of the outer membrane of mitochondria. Cell 93, 1009–1019.

    • Crossref
    • PubMed
    • Export Citation
  • Lahiri, S., Chao, J.T., Tavassoli, S., Wong, A.K., Choudhary, V., Young, B.P., Loewen, C.J., and Prinz, W.A. (2014). A conserved endoplasmic reticulum membrane protein complex (EMC) facilitates phospholipid transfer from the ER to mitochondria. PLoS Biol. 12, e1001969.

    • Crossref
    • PubMed
    • Export Citation
  • Lauffer, S., Mäbert, K., Czupalla, C., Pursche, T., Hoflack, B., Rödel, G., and Krause-Buchholz, U. (2012). Saccharomyces cerevisiae porin pore forms complexes with mitochondrial outer membrane proteins Om14p and Om45p. J. Biol. Chem. 287, 17447–17458.

    • Crossref
    • PubMed
    • Export Citation
  • Lionaki, E., de Marcos Lousa, C., Baud, C., Vougioukalaki, M., Panayotou, G., and Tokatlidis, K. (2008). The essential function of Tim12 in vivo is ensured by the assembly interactions of its C-terminal domain. J. Biol. Chem. 283, 15747–15753.

    • Crossref
    • PubMed
    • Export Citation
  • Magri, A., Di Rosa, M.C., Orlandi, I., Guarino, F., Reina, S., Guanaccia, M., Morello, G., Spampinato, A., Cavallaro, S., Messina, A., et al. (2019). Deletion of voltage-dependent anion channel 1 knocks mitochondrial down triggering metabolic rewiring in yeast. Cell Mol. Life Sci. doi:.

    • Crossref
    • PubMed
    • Export Citation
  • Mårtensson, C.U., Priesnitz, C., Song, J., Ellenrieder, L., Doan, K.N., Boos, F., Floerchinger, A., Zufall, N., Oeljeklaus, S., Warscheid, B., et al. (2019). Mitochondrial protein translocation-associated degradation. Nature 569, 679–683.

    • Crossref
    • PubMed
    • Export Citation
  • Mehnert, C.S., Rampelt, H., Gebert, M., Oeljeklaus, S., Schrempp, S.G., Kochbeck, L., Guiard, B., Warscheid, B., and van der Laan, M. (2014). The mitochondrial ADP/ATP carrier associates with the inner membrane presequence translocase in a stoichiometric manner. J. Biol. Chem. 289, 27352–27362.

    • Crossref
    • Export Citation
  • Meisinger, C., Rissler, M., Chacinska, A., Sanjuán Szklarz, L.K.S., Milenkovic, D., Kozjak, V., Schönfisch, B., Lohaus, C., Meyer, H.E., Yaffe, M.P., et al. (2004). The mitochondrial morphology protein Mdm10 functions in assembly of the preprotein translocase of the outer membrane. Dev. Cell 7, 61–71.

    • Crossref
    • PubMed
    • Export Citation
  • Mertins, B., Psakis, G., and Essen, L.O. (2014). Voltage-dependent anion channels: the wizard of the mitochondrial outer membrane. Biol. Chem. 395, 1435–1442.

    • Crossref
    • PubMed
    • Export Citation
  • Messina, A., Reina, S., Guarino, F., and de Pinto, V. (2012). VDAC isoforms in mammals. Biochim. Biophys. Acta 1818, 1466–1476.

    • Crossref
    • PubMed
    • Export Citation
  • Model, K., Prinz, T., Ruiz, T., Rademacher, M., Krimmer, T., Kühlbrandt, W., Pfanner, N., and Meisinger, C. (2002). Protein translocase of the outer mitochondrial membrane: role of import receptors in the structural organization of the TOM complex. J. Mol. Biol. 316, 657–666.

    • Crossref
    • PubMed
    • Export Citation
  • Morgenstern, M., Stiller, S.B., Lübbert, P., Peikert, C.D., Dannenmaier, S., Drepper, F., Weil, U., Höß, P., Feuerstein, R., Gebert, M., et al. (2017). Definition of a high-confidence mitochondrial proteome at quantitative scale. Cell Rep. 19, 2836–2852.

    • Crossref
    • PubMed
    • Export Citation
  • Müller, C.S., Bildl, W., Haupt, A., Ellenrieder, L., Becker, T., Hunte, C., Fakler, B., and Schulte, U. (2016). Cryo-slicing blue native-mass spectrometry (csBN-MS), a novel technology for high-resolution complexome profiling. Mol. Cell Proteomics 15, 669–681.

    • Crossref
    • PubMed
    • Export Citation
  • Myata, N., Fujii, S., and Kuge, O. (2018). Porin proteins have critical functions in mitochondrial phospholipid metabolism in yeast. J. Biol. Chem. 293, 17593–17605.

    • Crossref
    • PubMed
    • Export Citation
  • Neupert, W. (2015). A perspective on transport of proteins into mitochondria: a myriad of open questions. J. Mol. Biol. 427, 1135–1158.

    • Crossref
    • PubMed
    • Export Citation
  • Opaliński, Ł., Song, J., Priesnitz, C., Wenz, L.S., Oeljeklaus, S.,Warscheid, B., Pfanner, N., and Becker, T. (2018). Recruitment of cytosolic J-proteins by TOM receptors promotes mitochondrial protein biogenesis. Cell Rep. 25, 2036–2043.

    • Crossref
    • PubMed
    • Export Citation
  • Pagliarini, D.J., Calvo, S.E., Chang, B., Sheth, S.A., Vafai, S.B., Ong, S.-E., Walford, G.A., Sugiana, C., Boneh, A., Chen, W.K., et al. (2008). A mitochondrial protein compendium elucidates complex I disease biology. Cell 134, 112–123.

    • Crossref
    • PubMed
    • Export Citation
  • Palmieri, F. and Pierri, C.L. (2010). Mitochondrial metabolite transport. Essays Biochem. 47, 37–52.

    • Crossref
    • PubMed
    • Export Citation
  • Papić, D., Elbaz-Alon, Y., Koerdt, S.N., Leopold, K., Worm, D., Jung, M., Schuldiner, M., and Rapaport, D. (2013). The role of Djp1 in import of the mitochondrial protein Mim1 demonstrates specificity between a cochaperone and its substrate protein. Mol. Cell Biol. 33, 4083–4094.

    • Crossref
    • PubMed
    • Export Citation
  • Paschen, S.A., Waizenegger, T., Stan, T., Preuss, M., Cyrklaff, M., Hell, K., Rapaport, D., and Neupert, W. (2003). Evolutionary conservation of biogenesis of β-barrel membrane proteins. Nature 426, 862–866.

    • Crossref
    • PubMed
    • Export Citation
  • Peixoto, P.M.V., Grana, F., Roy, T.J., Dunn, C.D., Flores, M., Jensen, R.E., and Campo, M.L. (2007). Awaking TIM22, a dynamic ligand-gated channel for protein insertion in the mitochondrial inner membrane. J. Biol. Chem. 282, 18694–18701.

    • Crossref
    • PubMed
    • Export Citation
  • Pfanner, N., Warscheid, B., and Wiedemann, N. (2019). Mitochondrial proteins: from biogenesis to functional networks. Nat. Rev. Mol. Cell Biol. 20, 267–284.

    • Crossref
    • PubMed
    • Export Citation
  • Qiu, J., Wenz, L.S., Zerbes, R.M., Oeljeklaus, S., Bohnert, M., Stroud, D.A., Wirth, C., Ellenrieder, L., Thornton, N., Kutik, S., et al. (2013). Coupling of mitochondrial import and export translocases by receptor-mediated supercomplex formation. Cell 154, 596–608.

    • Crossref
    • PubMed
    • Export Citation
  • Rampelt, H., Sucec, I., Bersch, B., Horten, P., Perschil, I., Martinou, J.C., van der Laan, M., Wiedemann, N., Schanda, P., and Pfanner, N. (2020). The mitochondrial carrier pathway transports non-canonical substrates with an odd number of transmembrane segments. BMC Biol. 18, 2.

    • Crossref
    • PubMed
    • Export Citation
  • Rao, S., Schmidt, O., Harbauer, A., Schönfisch, B., Guiard, B., Pfanner, N., and Meisinger, C. (2012). Biogenesis of the preprotein translocase of the outer mitochondrial membrane: protein kinase A phosphorylates the precursor of Tom40 and impairs its import. Mol. Biol. Cell 23, 1618–1627.

    • Crossref
    • PubMed
    • Export Citation
  • Rehling, P., Model, K., Brandner, K., Kovermann, P., Sickmann, A., Meyer, H.E., Kühlbrandt, W., Wagner, R., Truscott, K.N., and Pfanner, N. (2003). Protein insertion into the mitochondrial inner membrane by a twin-pore translocase. Science 299, 1747–1751.

    • Crossref
    • PubMed
    • Export Citation
  • Ryan, M.T., Müller, H., and Pfanner, N. (1999). Functional staging of ADP/ATP carrier translocation across the outer mitochondrial membrane. J. Biol. Chem. 274, 20619–20627.

    • Crossref
    • PubMed
    • Export Citation
  • Sakaue, H., Shiota, T., Ishizaka, N., Kawano, S., Tamura, Y., Tan, K.S., Imai, K., Motono, C., Hirokawa, T., Taki, K., et al. (2019). Porin associates with Tom22 to regulate the mitochondrial protein gate assembly. Mol. Cell 73, 1044–1055

    • Crossref
    • PubMed
    • Export Citation
  • Schmitt, S., Ahting, U., Eichacker, L., Granvogl, B., Go, N.E., Nargang, F.E., Neupert, W., and Nussberger, S. (2005). Role of Tom5 in maintaining the structural stability of the TOM complex of mitochondria. J. Biol. Chem. 280, 14499–14506.

    • Crossref
    • PubMed
    • Export Citation
  • Schmidt, O., Harbauer, A.B., Rao, S., Eyrich, B., Zahedi, R.P., Stojanovski, D., Schönfisch, B., Guiard, B., Sickmann, A., Pfanner, N., et al. (2011). Regulation of mitochondrial protein import by cytosolic kinases. Cell 144, 227–239.

    • Crossref
    • PubMed
    • Export Citation
  • Sherman, E.L., Go, N.E., and Nargang, F.E. (2005). Functions of the small proteins in the TOM complex of Neurospora crassa. Mol. Biol. Cell 16, 4172–4182.

    • Crossref
    • PubMed
    • Export Citation
  • Shiota, T., Imai, K., Qiu, J., Hewitt, V.L., Tan, K., Shen, H.H., Sakiyama, N., Fukasawa, Y., Hayat, S., Kamiya, M., et al. (2015). Molecular architecture of the active mitochondrial protein gate. Science 349, 1544–1548.

    • Crossref
    • PubMed
    • Export Citation
  • Shoshan-Barmatz, V., Ben-Hail, D., Admoni, L., Krelin, Y., and Tripathi, S.S. (2015). The mitochondrial voltage-dependent anion channel 1 in tumor cells. Biochim. Biophys. Acta 1848, 2547–2575.

    • Crossref
    • PubMed
    • Export Citation
  • Suzuki, H., Kadowaki, T., Maeda, M., Sasaki, H., Nabekura, J., Sakaguchi, M., and Mihara, K. (2004). Membrane-embedded C-terminal segment of rat mitochondrial TOM40 constitutes protein-conducting pore with enriched β-structure. J. Biol. Chem. 279, 50619–50629.

    • Crossref
    • PubMed
    • Export Citation
  • Thornton, N., Stroud, D.A., Milenkovic, D., Guiard, B., Pfanner, N., and Becker, T. (2010). Two modular forms of the mitochondrial sorting and assembly machinery are involved in biogenesis of α-helical outer membrane proteins. J. Mol. Biol. 396, 540–549.

    • Crossref
    • PubMed
    • Export Citation
  • Truscott, K.N., Wiedemann, N., Rehling, P., Müller, H., Meisinger, C., Pfanner, N., and Guiard, B. (2002). Mitochondrial import of the ADP/ATP carrier: the essential TIM complex of the intermembrane space is required for precursor release from the TOM complex. Mol. Cell. Biol. 22, 7780–7789.

    • Crossref
    • PubMed
    • Export Citation
  • Tucker, K. and Park, E. (2019). Cryo-EM structure of the mitochondrial protein-import channel TOM complex at near-atomic resolution. Nat. Struct. Mol. Biol. 26, 1158–1166.

    • Crossref
    • PubMed
    • Export Citation
  • Ujwal, R., Cascio, D., Colletier, J.P., Faham, S., Zhang, J., Toro, L., Ping, P., and Abramson, J. (2008). The crystal structure of mouse VDAC1 at 2.3 Å resolution reveals mechanistic insights into metabolite gating. Proc. Natl. Acad. Sci. USA 105, 17742–17747.

    • Crossref
    • Export Citation
  • van der Laan, M., Wiedemann, N., Mick, D.U., Guiard, B., Rehling, P., and Pfanner, N. (2006). A role for Tim21 in membrane potential-dependent preprotein sorting in mitochondria. Curr. Biol. 16, 2271–2276.

    • Crossref
    • PubMed
    • Export Citation
  • van Wilpe, S., Ryan, M.T., Hill, K., Maarse, A.C., Meisinger, C., Brix, J., Dekker, P.J.T., Moczko, M., Wagner, R., Meijer, M., et al. (1999). Tom22 is a multifunctional organizer of the mitochondrial preprotein translocase. Nature 401, 485–489.

    • Crossref
    • PubMed
    • Export Citation
  • Vasiljev, A., Ahting, U., Nargang, F.E., Go, N.E., Habib, S.J., Kozany, C., Panneels, V., Sinning, I., Prkisch, H., Neupert, W., et al. (2004). Reconstituted TOM core complex and Tim9/Tim10 complex of mitochondria are sufficient for translocation of the ADP/ATP carrier across membranes. Mol. Biol. Cell 15, 1445–1458.

    • Crossref
    • PubMed
    • Export Citation
  • von der Malsburg, K., Müller, J.M., Bohnert, M., Oeljeklaus, S., Kwiatkowska, P., Becker, T., Loniewska-Lwowska, A., Wiese, S., Rao, S., Milenkovic, D., et al. (2011). Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev. Cell, 21, 694–707.

    • Crossref
    • Export Citation
  • Vukotic, M., Nolte, H., König, T., Saita, S., Ananjew, M., Krüger, M., Tatsuta, T., and Langer, T. (2017). Acylglycerol kinase mutated in Sengers syndrome is a subunit of the TIM22 protein translocase in mitochondria. Mol. Cell 67, 471–490.

    • Crossref
    • PubMed
    • Export Citation
  • Wagner, K., Gebert, N., Guiard, B., Brandner, K., Truscott, K.N., Wiedemann, N., Pfanner, N., and Rehling, P. (2008). The assembly pathway of the mitochondrial carrier translocase involves four preprotein translocases. Mol. Cell Biol. 28, 4251–4260.

    • Crossref
    • PubMed
    • Export Citation
  • Webb, C.T., Gorman, M.A., Lazarou, M., Ryan, M.T., and Gulbis, J.M. (2006). Crystal structure of the mitochondrial chaperone TIM9-10 reveals a six-bladed α-propeller. Mol Cell. 21, 123–133.

    • Crossref
    • PubMed
    • Export Citation
  • Weidberg, H. and Amon, A. (2018). MitoCPR – a surveillance pathway that protects mitochondria in response to protein import stress. Science 360, eaan4146.

    • Crossref
    • PubMed
    • Export Citation
  • Weinhäupl, K., Lindau, C., Hessel, A., Wang, Y., Schütze, C., Jores, T., Melchionda, L., Schönfisch, B., Kalbacher, H., Bersch, B., et al. (2018). Structural basis of membrane protein chaperoning through the mitochondrial intermembrane space. Cell, 175, 1365–1379.

    • Crossref
    • Export Citation
  • Wenz, L.S., Ellenrieder, L., Qiu, J., Bohnert, M., Zufall, N., van der Laan, M., Pfanner, N., Wiedemann, N., and Becker, T. (2015). Sam37 is crucial for formation of the mitochondrial TOM-SAM supercomplex, thereby promoting β-barrel biogenesis. J. Cell. Biol. 210, 1047–1054.

    • Crossref
    • PubMed
    • Export Citation
  • Wiedemann, N., Pfanner, N., and Ryan, M.T. (2001). The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. EMBO J. 20, 951–960.

    • Crossref
    • PubMed
    • Export Citation
  • Wiedemann, N., Kozjak, V., Chacinska, A., Schönfisch, B., Rospert, S., Ryan, M.T., Pfanner, N., and Meisinger, C. (2003). Machinery for protein sorting and assembly in the mitochondrial outer membrane. Nature 424, 565–571.

    • Crossref
    • PubMed
    • Export Citation
  • Wiedemann, N., van der Laan, M., Hutu, D.P., Rehling, P., andPfanner, N. (2007). Sorting switch of mitochondrial presequence translocase involves coupling of motor module to respiratory chain. J. Cell Biol. 179, 1115–1122.

    • Crossref
    • PubMed
    • Export Citation
  • Wu, Y. and Sha, B. (2006). Crystal structure of yeast outer membrane translocon member Tom70p. Nat. Struct. Mol. Biol. 13, 589–593.

    • Crossref
    • PubMed
    • Export Citation
  • Yamamoto, H., Fukui, K., Takahashi, H., Kitamura, S., Shiota, T., Terao, K., Ushida, M., Esaki, M., Nishikawa, S., Yoshihisa, T., et al. (2009). Roles of Tom70 in import of presequence-containing mitochondrial proteins. J. Biol. Chem. 284, 31635–31646.

    • Crossref
    • PubMed
    • Export Citation
  • Yamano, K., Yatsukawa, Y., Esaki, M., Hobbs, A.E.A., Jensen, R.E., and Endo, T. (2008). Tom20 and Tom22 share the common signal recognition pathway in mitochondrial protein import. J. Biol. Chem. 283, 3799–3807.

    • Crossref
    • PubMed
    • Export Citation
  • Yamano, K., Tanaka-Yamano, S., and Endo, T. (2010). Mdm10 as a dynamic constituent of the TOB/SAM complex directs coordinated assembly of Tom40. EMBO Rep. 11, 187–193.

    • Crossref
    • PubMed
    • Export Citation
  • Young, J.C., Hoogenraad, N.J., and Hartl, F.U. (2003). Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell 112, 41–50.

    • Crossref
    • PubMed
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Biological Chemistry keeps you up-to-date with the latest advances in the molecular life sciences. The journal publishes Research Articles, Short Communications, Reviews and Minireviews. Areas include: general biochemistry/pathobiochemistry, structural biology, molecular and cellular biology, genetics and epigenetics, virology, molecular medicine, plant molecular biology/biochemistry and novel experimental methodologies.

Search