Asymmetric inheritance of mitochondria in yeast

  • 1 Institut für Zellbiologie, Universität Bayreuth, 95440 Bayreuth, Germany
Till Klecker and Benedikt WestermannORCID iD: https://orcid.org/0000-0002-2991-1604

Abstract

Mitochondria are essential organelles of virtually all eukaryotic organisms. As they cannot be made de novo, they have to be inherited during cell division. In this review, we provide an overview on mitochondrial inheritance in Saccharomyces cerevisiae, a powerful model organism to study asymmetric cell division. Several processes have to be coordinated during mitochondrial inheritance: mitochondrial transport along the actin cytoskeleton into the emerging bud is powered by a myosin motor protein; cell cortex anchors retain a critical fraction of mitochondria in the mother cell and bud to ensure proper partitioning; and the quantity of mitochondria inherited by the bud is controlled during cell cycle progression. Asymmetric division of yeast cells produces rejuvenated daughter cells and aging mother cells that die after a finite number of cell divisions. We highlight the critical role of mitochondria in this process and discuss how asymmetric mitochondrial partitioning and cellular aging are connected.

  • Akhmanova, A. and Hammer 3rd, J.A. (2010). Linking molecular motors to membrane cargo. Curr. Opin. Cell Biol. 22, 479–487.

    • Crossref
    • PubMed
    • Export Citation
  • Altmann, K. and Westermann, B. (2005). Role of essential genes in mitochondrial morphogenesis in Saccharomyces cerevisiae. Mol. Biol. Cell 16, 5410–5417.

    • Crossref
    • PubMed
    • Export Citation
  • Altmann, K., Frank, M., Neumann, D., Jakobs, S., and Westermann, B. (2008). The class V myosin motor protein, Myo2, plays a major role in mitochondrial motility in Saccharomyces cerevisiae. J. Cell Biol. 181, 119–130.

    • Crossref
    • Export Citation
  • Arai, S., Noda, Y., Kainuma, S., Wada, I., and Yoda, K. (2008). Ypt11 functions in bud-directed transport of the Golgi by linking Myo2 to the coatomer subunit Ret2. Curr. Biol. 18, 987–991.

    • Crossref
    • PubMed
    • Export Citation
  • Aretz, I., Jakubke, C., and Osman, C. (2019). Power to the daughters – mitochondrial and mtDNA transmission during cell division. Biol. Chem. doi: 10.1515/hsz-2019-0337. [Epub ahead of print].

  • Babazadeh, R., Ahmadpour, D., Jia, S., Hao, X., Widlund, P., Schneider, K., Eisele, F., Edo, L.D., Smits, G.J., Liu, B., et al. (2019). Syntaxin 5 Is required for the formation and clearance of protein inclusions during proteostatic stress. Cell Rep. 28, 2096–2110.

    • Crossref
    • PubMed
    • Export Citation
  • Bleazard, W., McCaffery, J.M., King, E.J., Bale, S., Mozdy, A., Tieu, Q., Nunnari, J., and Shaw, J.M. (1999). The dynamin-related GTPase Dnm1 regulates mitochondrial fission in yeast. Nat. Cell Biol. 1, 298–304.

    • Crossref
    • PubMed
    • Export Citation
  • Böckler, S., Chelius, X., Hock, N., Klecker, T., Wolter, M., Weiss, M., Braun, R.J., and Westermann, B. (2017). Fusion, fission, and transport control asymmetric inheritance of mitochondria and protein aggregates. J. Cell Biol. 216, 2481–2498.

    • Crossref
    • PubMed
    • Export Citation
  • Boldogh, I.R. and Pon, L.A. (2007). Mitochondria on the move. Trends Cell Biol. 17, 502–510.

    • Crossref
    • PubMed
    • Export Citation
  • Boldogh, I.R., Yang, H.-C., Nowakowski, W.D., Karmon, S.L., Hays, L.G., Yates III, J.R., and Pon, L.A. (2001). Arp2/3 complex and actin dynamics are required for actin-based mitochondrial motility in yeast. Proc. Natl. Acad. Sci. U.S.A. 98, 3162–3167.

    • Crossref
    • PubMed
    • Export Citation
  • Boldogh, I.R., Nowakowski, D.W., Yang, H.C., Chung, H., Karmon, S., Royes, P., and Pon, L.A. (2003). A protein complex containing Mdm10p, Mdm12p, and Mmm1p links mitochondrial membranes and DNA to the cytoskeleton-based segregation machinery. Mol. Biol. Cell 14, 4618–4627.

    • Crossref
    • PubMed
    • Export Citation
  • Boldogh, I.R., Ramcharan, S.L., Yang, H.C., and Pon, L.A. (2004). A type V myosin (Myo2p) and a Rab-like G-protein (Ypt11p) are required for retention of newly inherited mitochondria in yeast cells during cell division. Mol. Biol. Cell 15, 3994–4002.

    • Crossref
    • Export Citation
  • Bruderek, M., Jaworek, W., Wilkening, A., Rüb, C., Cenini, G., Förtsch, A., Sylvester, M., and Voos, W. (2018). IMiQ: a novel protein quality control compartment protecting mitochondrial functional integrity. Mol. Biol. Cell 29, 256–269.

    • Crossref
    • PubMed
    • Export Citation
  • Cameron, L.A., Giardini, P.A., Soo, F.S., and Theriot, J.A. (2000). Secrets of actin-based motility revealed by a bacterial pathogen. Nat Rev Mol Cell Biol 1, 110–119.

    • Crossref
    • PubMed
    • Export Citation
  • Cerveny, K.L., Studer, S.L., Jensen, R.E., and Sesaki, H. (2007). Yeast mitochondrial division and distribution require the cortical Num1 protein. Dev. Cell 12, 363–375.

    • Crossref
    • PubMed
    • Export Citation
  • Chacko, L.A., Mehta, K., and Ananthanarayanan, V. (2019). Cortical tethering of mitochondria by the anchor protein Mcp5 enables uniparental inheritance. J. Cell Biol. 218, 3560–3571.

    • Crossref
    • PubMed
    • Export Citation
  • Chen, W., Ping, H.A., and Lackner, L.L. (2018). Direct membrane binding and self-interaction contribute to Mmr1 function in mitochondrial inheritance. Mol. Biol. Cell 29, 2346–2357.

    • Crossref
    • PubMed
    • Export Citation
  • Chernyakov, I., Santiago-Tirado, F., and Bretscher, A. (2013). Active segregation of yeast mitochondria by Myo2 is essential and mediated by Mmr1 and Ypt11. Curr. Biol. 23, 1818–1824.

    • Crossref
    • PubMed
    • Export Citation
  • Dalton, C.M. and Carroll, J. (2013). Biased inheritance of mitochondria during asymmetric cell division in the mouse oocyte. J. Cell Sci. 126, 2955–2964.

    • Crossref
    • PubMed
    • Export Citation
  • Dimmer, K.S., Fritz, S., Fuchs, F., Messerschmitt, M., Weinbach, N., Neupert, W., and Westermann, B. (2002). Genetic basis of mitochondrial function and morphology in Saccharomyces cerevisiae. Mol. Biol. Cell 13, 847–853.

    • Crossref
    • PubMed
    • Export Citation
  • Du, Y., Walker, L., Novick, P., and Ferro-Novick, S. (2006). Ptc1p regulates cortical ER inheritance via Slt2p. EMBO J. 25, 4413–4422.

    • Crossref
    • PubMed
    • Export Citation
  • Dürr, M., Escobar-Henriques, M., Merz, S., Geimer, S., Langer, T., and Westermann, B. (2006). Nonredundant roles of mitochondria-associated F-box proteins Mfb1 and Mdm30 in maintenance of mitochondrial morphology in yeast. Mol. Biol. Cell 17, 3745–3755.

    • Crossref
    • PubMed
    • Export Citation
  • Eves, P.T., Jin, Y., Brunner, M., and Weisman, L.S. (2012). Overlap of cargo binding sites on myosin V coordinates the inheritance of diverse cargoes. J. Cell Biol. 198, 69–85.

    • Crossref
    • PubMed
    • Export Citation
  • Fagarasanu, A., Mast, F.D., Knoblach, B., and Rachubinski, R.A. (2010). Molecular mechanisms of organelle inheritance: lessons from peroxisomes in yeast. Nat. Rev. Mol. Cell Biol. 11, 644–654.

    • Crossref
    • PubMed
    • Export Citation
  • Farkasovsky, M. and Küntzel, H. (1995). Yeast Num1p associates with the mother cell cortex during S/G2 phase and affects microtubular functions. J. Cell Biol. 131, 1003–1014.

    • Crossref
    • Export Citation
  • Farkasovsky, M. and Küntzel, H. (2001). Cortical Num1p interacts with the dynein intermediate chain Pac11p and cytoplasmic microtubules in budding yeast. J. Cell Biol. 152, 251–262.

    • Crossref
    • PubMed
    • Export Citation
  • Fehrenbacher, K.L., Yang, H.C., Gay, A.C., Huckaba, T.M., and Pon,L.A. (2004). Live cell imaging of mitochondrial movement along actin cables in budding yeast. Curr. Biol. 14, 1996–2004.

    • Crossref
    • PubMed
    • Export Citation
  • Fehrenbacher, K.L., Boldogh, I.R., and Pon, L.A. (2005). A role for Jsn1p in recruiting the Arp2/3 complex to mitochondria in budding yeast. Mol. Biol. Cell 16, 5094–5102.

    • Crossref
    • PubMed
    • Export Citation
  • Förtsch, J., Hummel, E., Krist, M., and Westermann, B. (2011). The myosin-related motor protein Myo2 is an essential mediator of bud-directed mitochondrial movement in yeast. J. Cell Biol. 194, 473–488.

    • Crossref
    • PubMed
    • Export Citation
  • Frederick, R.L. and Shaw, J.M. (2007). Moving mitochondria: establishing distribution of an essential organelle. Traffic 8, 1668–1675.

    • Crossref
    • PubMed
    • Export Citation
  • Frederick, R.L., Okamoto, K., and Shaw, J.M. (2008). Multiple pathways influence mitochondrial inheritance in budding yeast. Genetics 178, 825–837.

    • Crossref
    • PubMed
    • Export Citation
  • Galan, J.M., Wiederkehr, A., Seol, J.H., Haguenauer-Tsapis, R., Deshaies, R.J., Riezman, H., and Peter, M. (2001). Skp1p and the F-box protein Rcy1p form a non-SCF complex involved in recycling of the SNARE Snc1p in yeast. Mol. Cell. Biol. 21, 3105–3117.

    • Crossref
    • Export Citation
  • Garcia-Rodriguez, L.J., Gay, A.C., and Pon, L.A. (2007). Puf3p, a Pumilio family RNA binding protein, localizes to mitochondria and regulates mitochondrial biogenesis and motility in budding yeast. J. Cell Biol. 176, 197–207.

    • Crossref
    • PubMed
    • Export Citation
  • Goode, B.L. and Eck, M.J. (2007). Mechanism and function of formins in the control of actin assembly. Annu Rev Biochem 76, 593–627.

    • Crossref
    • PubMed
    • Export Citation
  • Hammer 3rd, J.A. and Sellers, J.R. (2011). Walking to work: roles for class V myosins as cargo transporters. Nat Rev Mol Cell Biol 13, 13–26.

    • PubMed
    • Export Citation
  • Hammermeister, M., Schödel, K., and Westermann, B. (2010). Mdm36 is a mitochondrial fission-promoting protein in Saccharomyces cerevisiae. Mol. Biol. Cell 21, 2443–2452.

    • Crossref
    • PubMed
    • Export Citation
  • Heil-Chapdelaine, R.A., Oberle, J.R., and Cooper, J.A. (2000). The cortical protein Num1p is essential for dynein-dependent interactions of microtubules with the cortex. J. Cell Biol. 151, 1337–1343.

    • Crossref
    • PubMed
    • Export Citation
  • Higuchi, R., Vevea, J.D., Swayne, T.C., Chojnowski, R., Hill, V., Boldogh, I.R., and Pon, L.A. (2013). Actin dynamics affect mitochondrial quality control and aging in budding yeast. Curr. Biol. 23, 2417–2422.

    • Crossref
    • PubMed
    • Export Citation
  • Higuchi-Sanabria, R., Pernice, W.M., Vevea, J.D., Alessi Wolken, D.M., Boldogh, I.R., and Pon, L.A. (2014). Role of asymmetric cell division in lifespan control in Saccharomyces cerevisiae. FEMS Yeast Res. 14, 1133––1146.

    • Crossref
    • PubMed
    • Export Citation
  • Higuchi-Sanabria, R., Charalel, J.K., Viana, M.P., Garcia, E.J., Sing, C.N., Koenigsberg, A., Swayne, T.C., Vevea, J.D., Boldogh, I.R., Rafelski, S.M., et al. (2016). Mitochondrial anchorage and fusion contribute to mitochondrial inheritance and quality control in the budding yeast Saccharomyces cerevisiae. Mol. Biol. Cell 27, 776–787.

    • Crossref
    • PubMed
    • Export Citation
  • Hill, S.M., Hanzen, S., and Nyström, T. (2017). Restricted access: spatial sequestration of damaged proteins during stress and aging. EMBO Rep. 18, 377–391.

    • Crossref
    • PubMed
    • Export Citation
  • Hoppins, S., Collins, S.R., Cassidy-Stone, A., Hummel, E., Devay, R.M., Lackner, L.L., Westermann, B., Schuldiner, M., Weissman, J.S., and Nunnari, J. (2011). A mitochondrial-focused genetic interaction map reveals a scaffold-like complex required for inner membrane organization in mitochondria. J. Cell Biol. 195, 323–340.

    • Crossref
    • PubMed
    • Export Citation
  • Huckaba, T.M., Gay, A.C., Pantalena, L.F., Yang, H.C., and Pon, L.A. (2004). Live cell imaging of the assembly, disassembly, and actin cable-dependent movement of endosomes and actin patches in the budding yeast, Saccharomyces cerevisiae. J. Cell Biol. 167, 519–530.

    • Crossref
    • PubMed
    • Export Citation
  • Itoh, T., Watabe, A., Toh-e, A., and Matsui, Y. (2002). Complex formation with Ypt11p, a rab-type small GTPase, is essential to facilitate the function of Myo2p, a class V myosin, in mitochondrial distribution in Saccharomyces cerevisiae. Mol. Cell. Biol. 22, 7744–7757.

    • Crossref
    • PubMed
    • Export Citation
  • Itoh, T., Toh-e, A., and Matsui, Y. (2004). Mmr1p is a mitochondrial factor for Myo2p-dependent inheritance of mitochondria in the budding yeast. EMBO J. 23, 2520–2530.

    • Crossref
    • PubMed
    • Export Citation
  • Jakobs, S., Martini, N., Schauss, A.C., Egner, A., Westermann, B., and Hell, S.W. (2003). Spatial and temporal dynamics of budding yeast mitochondria lacking the division component Fis1p. J. Cell Sci. 116, 2005–2014.

    • Crossref
    • PubMed
    • Export Citation
  • Ji, W.K., Hatch, A.L., Merrill, R.A., Strack, S., and Higgs, H.N. (2015). Actin filaments target the oligomeric maturation of the dynamin GTPase Drp1 to mitochondrial fission sites. eLife 4, e11553.

    • Crossref
    • PubMed
    • Export Citation
  • Jin, Y., Taylor Eves, P., Tang, F., and Weisman, L.S. (2009). PTC1 is required for vacuole inheritance and promotes the association of the myosin-V vacuole-specific receptor complex. Mol. Biol. Cell 20, 1312–1323.

    • Crossref
    • PubMed
    • Export Citation
  • Jongsma, M.L., Berlin, I., and Neefjes, J. (2015). On the move: organelle dynamics during mitosis. Trends Cell Biol. 25, 112–124.

    • Crossref
    • PubMed
    • Export Citation
  • Kaeberlein, M. (2010). Lessons on longevity from budding yeast. Nature 464, 513–519.

    • Crossref
    • PubMed
    • Export Citation
  • Kanfer, G., Courtheoux, T., Peterka, M., Meier, S., Soste, M., Melnik, A., Reis, K., Aspenstrom, P., Peter, M., Picotti, P., et al. (2015). Mitotic redistribution of the mitochondrial network by Miro and Cenp-F. Nat. Commun. 6, 8015.

    • Crossref
    • PubMed
    • Export Citation
  • Kashatus, D.F., Lim, K.H., Brady, D.C., Pershing, N.L., Cox, A.D., and Counter, C.M. (2011). RALA and RALBP1 regulate mitochondrial fission at mitosis. Nat. Cell Biol. 13, 1108–1115.

    • Crossref
    • PubMed
    • Export Citation
  • Katajisto, P., Dohla, J., Chaffer, C.L., Pentinmikko, N., Marjanovic, N., Iqbal, S., Zoncu, R., Chen, W., Weinberg, R.A., and Sabatini, D.M. (2015). Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science 348, 340–343.

    • Crossref
    • PubMed
    • Export Citation
  • Klecker, T., Scholz, D., Förtsch, J., and Westermann, B. (2013). The yeast cell cortical protein Num1 integrates mitochondrial dynamics into cellular architecture. J. Cell Sci. 126, 2924–2930.

    • Crossref
    • PubMed
    • Export Citation
  • Klecker, T., Böckler, S., and Westermann, B. (2014). Making connections: interorganelle contacts orchestrate mitochondrial behavior. Trends Cell Biol. 24, 537–545.

    • Crossref
    • PubMed
    • Export Citation
  • Klinger, H., Rinnerthaler, M., Lam, Y.T., Laun, P., Heeren, G., Klocker, A., Simon-Nobbe, B., Dickinson, J.R., Dawes, I.W., and Breitenbach, M. (2010). Quantitation of (a)symmetric inheritance of functional and of oxidatively damaged mitochondrial aconitase in the cell division of old yeast mother cells. Exp. Gerontol. 45, 533–542.

    • Crossref
    • PubMed
    • Export Citation
  • Knoblach, B. and Rachubinski, R.A. (2015). Sharing the cell’s bounty – organelle inheritance in yeast. J. Cell Sci. 128, 621–630.

    • Crossref
    • PubMed
    • Export Citation
  • Kondo-Okamoto, N., Ohkuni, K., Kitagawa, K., McCaffery, J.M., Shaw, J.M., and Okamoto, K. (2006). The novel F-box protein Mfb1p regulates mitochondrial connectivity and exhibits asymmetric localization in yeast. Mol. Biol. Cell 17, 3756–3767.

    • Crossref
    • PubMed
    • Export Citation
  • Kormanec, J., Schaaf-Gerstenschläger, I., Zimmermann, F.K., Perecko, D., and Küntzel, H. (1991). Nuclear migration in Saccharomyces cerevisiae is controlled by the highly repetitive 313 kDa NUM1 protein. Mol. Gen. Genet. 230, 277–287.

    • Crossref
    • PubMed
    • Export Citation
  • Kornmann, B., Currie, E., Collins, S.R., Schuldiner, M., Nunnari, J., Weissman, J.S., and Walter, P. (2009). An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325, 477–481.

    • Crossref
    • PubMed
    • Export Citation
  • Korobova, F., Ramabhadran, V., and Higgs, H.N. (2013). An actin-dependent step in mitochondrial fission mediated by the ER-associated formin INF2. Science 339, 464–467.

    • Crossref
    • PubMed
    • Export Citation
  • Kraft, L.M. and Lackner, L.L. (2017). Mitochondria-driven assembly of a cortical anchor for mitochondria and dynein. J. Cell Biol. 216, 3061–3071.

    • Crossref
    • PubMed
    • Export Citation
  • Kraft, L.M. and Lackner, L.L. (2019). A conserved mechanism for mitochondria-dependent dynein anchoring. Mol. Biol. Cell 30, 691–702.

    • Crossref
    • PubMed
    • Export Citation
  • Lackner, L.L. (2013). Determining the shape and cellular distribution of mitochondria: the integration of multiple activities. Curr. Opin. Cell Biol. 25, 471–476.

    • Crossref
    • PubMed
    • Export Citation
  • Lackner, L.L., Ping, H., Graef, M., Murley, A., and Nunnari, J. (2013). Endoplasmic reticulum-associated mitochondria-cortex tether functions in the distribution and inheritance of mitochondria. Proc. Natl. Acad. Sci. U.S.A. 110, E458–E467.

    • Crossref
    • PubMed
    • Export Citation
  • Lai, C.Y., Jaruga, E., Borghouts, C., and Jazwinski, S.M. (2002). A mutation in the ATP2 gene abrogates the age asymmetry between mother and daughter cells of the yeast Saccharomyces cerevisiae. Genetics 162, 73–87.

    • PubMed
    • Export Citation
  • Lam, Y.T., Aung-Htut, M.T., Lim, Y.L., Yang, H., and Dawes, I.W. (2011). Changes in reactive oxygen species begin early during replicative aging of Saccharomyces cerevisiae cells. Free Radic Biol Med 50, 963–970.

    • Crossref
    • PubMed
    • Export Citation
  • Lawrence, E.J. and Mandato, C.A. (2013). Mitochondria localize to the cleavage furrow in mammalian cytokinesis. PLoS One 8, e72886.

    • Crossref
    • PubMed
    • Export Citation
  • Lazzarino, D.A., Boldogh, I., Smith, M.G., Rosand, J., and Pon, L.A. (1994). Yeast mitochondria contain ATP-sensitive, reversible actin-binding activity. Mol. Biol. Cell 5, 807–818.

    • Crossref
    • PubMed
    • Export Citation
  • Lewandowska, A., Macfarlane, J., and Shaw, J.M. (2013). Mitochondrial association, protein phosphorylation, and degradation regulate the availability of the active Rab GTPase Ypt11 for mitochondrial inheritance. Mol. Biol. Cell 24, 1185–1195.

    • Crossref
    • PubMed
    • Export Citation
  • Li, X., Du, Y., Siegel, S., Ferro-Novick, S., and Novick, P. (2010). Activation of the mitogen-activated protein kinase, Slt2p, at bud tips blocks a late stage of endoplasmic reticulum inheritance in Saccharomyces cerevisiae. Mol. Biol. Cell 21, 1772–1782.

    • Crossref
    • PubMed
    • Export Citation
  • Lillie, S.H. and Brown, S.S. (1994). Immunofluorescence localization of the unconventional myosin, Myo2p, and the putative kinesin-related protein, Smy1p, to the same regions of polarized growth in Saccharomyces cerevisiae. J. Cell Biol. 125, 825–842.

    • Crossref
    • PubMed
    • Export Citation
  • Lippuner, A.D., Julou, T., and Barral, Y. (2014). Budding yeast as a model organism to study the effects of age. FEMS Microbiol. Rev. 38, 300–325.

    • Crossref
    • Export Citation
  • Loewen, C.J., Young, B.P., Tavassoli, S., and Levine, T.P. (2007). Inheritance of cortical ER in yeast is required for normal septin organization. J. Cell Biol. 179, 467–483.

    • Crossref
    • PubMed
    • Export Citation
  • Manzano-Lopez, J., Matellan, L., Alvarez-Llamas, A., Blanco-Mira, J.C., and Monje-Casas, F. (2019). Asymmetric inheritance of spindle microtubule-organizing centres preserves replicative lifespan. Nat. Cell Biol. 21, 952–965.

    • Crossref
    • PubMed
    • Export Citation
  • Matsui, Y. (2003). Polarized distribution of intracellular components by class V myosins in Saccharomyces cerevisiae. Int. Rev. Cytol. 229, 1–42.

    • Crossref
    • PubMed
    • Export Citation
  • McFaline-Figueroa, J.R., Vevea, J., Swayne, T.C., Zhou, C., Liu, C., Leung, G., Boldogh, I.R., and Pon, L.A. (2011). Mitochondrial quality control during inheritance is associated with lifespan and mother-daughter age asymmetry in budding yeast. Aging Cell 10, 885–895.

    • Crossref
    • PubMed
    • Export Citation
  • Merz, S., Hammermeister, M., Altmann, K., Dürr, M., and Westermann, B. (2007). Molecular machinery of mitochondrial dynamics in yeast. Biol. Chem. 388, 917–926.

    • PubMed
    • Export Citation
  • Miller, S.B., Mogk, A., and Bukau, B. (2015). Spatially organized aggregation of misfolded proteins as cellular stress defense strategy. J. Mol. Biol. 427, 1564–1574.

    • Crossref
    • PubMed
    • Export Citation
  • Mishra, P. and Chan, D.C. (2014). Mitochondrial dynamics and inheritance during cell division, development and disease. Nat. Rev. Mol. Cell Biol. 15, 634–646.

    • Crossref
    • PubMed
    • Export Citation
  • Moore, D.L. and Jessberger, S. (2016). Creating age asymmetry: consequences of inheriting damaged goods in mammalian cells. Trends Cell Biol. 27, 82–92.

    • PubMed
    • Export Citation
  • Moseley, J.B. and Goode, B.L. (2006). The yeast actin cytoskeleton: from cellular function to biochemical mechanism. Microbiol. Mol. Biol. Rev. 70, 605–645.

    • Crossref
    • PubMed
    • Export Citation
  • Nelson, D.E., Randle, S.J., and Laman, H. (2013). Beyond ubiquitination: the atypical functions of Fbxo7 and other F-box proteins. Open Biol 3, 130131.

    • Crossref
    • PubMed
    • Export Citation
  • Nyström, T. and Liu, B. (2014). The mystery of aging and rejuvenation – a budding topic. Curr. Opin. Microbiol. 18, 61–67.

    • Crossref
    • PubMed
    • Export Citation
  • Oeding, S.J., Majstrowicz, K., Hu, X.P., Schwarz, V., Freitag, A., Honnert, U., Nikolaus, P., and Bähler, M. (2018). Identification of Miro1 and Miro2 as mitochondrial receptors for myosin XIX. J. Cell Sci. 131, jcs219469.

    • Crossref
    • PubMed
    • Export Citation
  • Ouellet, J. and Barral, Y. (2012). Organelle segregation during mitosis: lessons from asymmetrically dividing cells. J. Cell Biol. 196, 305–313.

    • Crossref
    • PubMed
    • Export Citation
  • Peraza-Reyes, L., Crider, D.G., and Pon, L.A. (2010). Mitochondrial manoeuvres: Latest insights and hypotheses on mitochondrial partitioning during mitosis in Saccharomyces cerevisiae. Bioessays 10, 1040–1049.

  • Pernice, W.M., Vevea, J.D., and Pon, L.A. (2016). A role for Mfb1p in region-specific anchorage of high-functioning mitochondria and lifespan in Saccharomyces cerevisiae. Nat. Commun. 7, 10595.

    • Crossref
    • PubMed
    • Export Citation
  • Ping, H.A., Kraft, L.M., Chen, W., Nilles, A.E., and Lackner, L.L. (2016). Num1 anchors mitochondria to the plasma membrane via two domains with different lipid binding specificities. J. Cell Biol. 213, 513–524.

    • Crossref
    • PubMed
    • Export Citation
  • Pon, L.A. (2008). Golgi inheritance: rab rides the coat-tails. Curr. Biol. 18, R743–R745.

    • Crossref
    • PubMed
    • Export Citation
  • Pruyne, D., Legesse-Miller, A., Gao, L., Dong, Y., and Bretscher,A. (2004). Mechanisms of polarized growth and organelle segregation in yeast. Annu. Rev. Cell Dev. Biol. 20, 559–591.

    • Crossref
    • PubMed
    • Export Citation
  • Quintero, O.A., DiVito, M.M., Adikes, R.C., Kortan, M.B., Case, L.B., Lier, A.J., Panaretos, N.S., Slater, S.Q., Rengarajan, M., Feliu, M., et al. (2009). Human Myo19 is a novel myosin that associates with mitochondria. Curr. Biol. 19, 2008–2013.

    • Crossref
    • PubMed
    • Export Citation
  • Rafelski, S.M., Viana, M.P., Zhang, Y., Chan, Y.H., Thorn, K.S., Yam, P., Fung, J.C., Li, H., Costa Lda, F., and Marshall, W.F. (2012). Mitochondrial network size scaling in budding yeast. Science 338, 822–824.

    • Crossref
    • PubMed
    • Export Citation
  • Reck-Peterson, S.L., Provance, D.W., Jr., Mooseker, M.S., and Mercer, J.A. (2000). Class V myosins. Biochim. Biophys. Acta 1496, 36–51.

    • Crossref
    • PubMed
    • Export Citation
  • Rivolta, M.N. and Holley, M.C. (2002). Asymmetric segregation of mitochondria and mortalin correlates with the multi-lineage potential of inner ear sensory cell progenitors in vitro. Dev. Brain Res. 133, 49–56.

    • Crossref
    • Export Citation
  • Roeder, A.D., Hermann, G.J., Keegan, B.R., Thatcher, S.A., and Shaw, J.M. (1998). Mitochondrial inheritance is delayed in Saccharomyces cerevisiae cells lacking the serine/threonine phosphatase PTC1. Mol. Biol. Cell 9, 917–930.

    • Crossref
    • PubMed
    • Export Citation
  • Ruan, L., Zhang, X., and Li, R. (2018). Recent insights into the cellular and molecular determinants of aging. J Cell Sci 131, jcs210831.

    • Crossref
    • PubMed
    • Export Citation
  • Sawyer, E.M., Joshi, P.R., Jorgensen, V., Yunus, J., Berchowitz, L.E., and Ünal, E. (2019). Developmental regulation of an organelle tether coordinates mitochondrial remodeling in meiosis. J. Cell Biol. 218, 559–579.

    • Crossref
    • PubMed
    • Export Citation
  • Seabra, M.C. and Coudrier, E. (2004). Rab GTPases and myosin motors in organelle motility. Traffic 5, 393–399.

    • Crossref
    • PubMed
    • Export Citation
  • Sesaki, H. and Jensen, R.E. (1999). Division versus fusion: Dnm1p and Fzo1p antagonistically regulate mitochondrial shape. J. Cell Biol. 147, 699–706.

    • Crossref
    • PubMed
    • Export Citation
  • Shepard, K.A., Gerber, A.P., Jambhekar, A., Takizawa, P.A., Brown, P.O., Herschlag, D., DeRisi, J.L., and Vale, R.D. (2003). Widespread cytoplasmic mRNA transport in yeast: identification of 22 bud-localized transcripts using DNA microarray analysis. Proc. Natl. Acad. Sci. U.S.A. 100, 11429–11434.

    • Crossref
    • PubMed
    • Export Citation
  • Simon, V.R., Swayne, T.C., and Pon, L.A. (1995). Actin-dependent mitochondrial motility in mitotic yeast and cell-free systems: identification of a motor activity on the mitochondrial surface. J. Cell Biol. 130, 345–354.

    • Crossref
    • PubMed
    • Export Citation
  • Simon, V.R., Karmon, S.L., and Pon, L.A. (1997). Mitochondrial inheritance: cell cycle and actin cable dependence of polarized mitochondrial movements in Saccharomyces cerevisiae. Cell Motil. Cytoskel. 37, 199–210.

    • Crossref
    • Export Citation
  • Stevens, R.C. and Davis, T.N. (1998). Mlc1p is a light chain for the unconventional myosin Myo2p in Saccharomyces cerevisiae. J. Cell Biol. 142, 711–722.

    • Crossref
    • PubMed
    • Export Citation
  • Swayne, T.C., Zhou, C., Boldogh, I.R., Charalel, J.K., McFaline-Figueroa, J.R., Thoms, S., Yang, C., Leung, G., McInnes, J., Erdmann, R., et al. (2011). Role for cER and Mmr1p in anchorage of mitochondria at sites of polarized surface growth in budding yeast. Curr. Biol. 21, 1994–1999.

    • Crossref
    • PubMed
    • Export Citation
  • Taguchi, N., Ishihara, N., Jofuku, A., Oka, T., and Mihara, K. (2007). Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission. J. Biol. Chem. 282, 11521–11529.

    • Crossref
    • PubMed
    • Export Citation
  • Tanaka, Y., Kanai, Y., Okada, Y., Nonaka, S., Takeda, S., Harada, A., and Hirokawa, N. (1998). Targeted disruption of mouse conventional kinesin heavy chain, kif5B, results in abnormal perinuclear clustering of mitochondria. Cell 93, 1147–1158.

    • Crossref
    • PubMed
    • Export Citation
  • Tang, X., Punch, J.J., and Lee, W.L. (2009). A CAAX motif can compensate for the PH domain of Num1 for cortical dynein attachment. Cell Cycle 8, 3182–3190.

    • Crossref
    • Export Citation
  • Tang, K., Li, Y., Yu, C., and Wei, Z. (2019). Structural mechanism for versatile cargo recognition by the yeast class V myosin Myo2. J. Biol. Chem. 294, 5896–5906.

    • Crossref
    • PubMed
    • Export Citation
  • Trybus, K.M. (2008). Myosin V from head to tail. Cell. Mol. Life Sci. 65, 1378–1389.

    • Crossref
    • PubMed
    • Export Citation
  • Vevea, J.D., Swayne, T.C., Boldogh, I.R., and Pon, L.A. (2014). Inheritance of the fittest mitochondria in yeast. Trends Cell Biol. 24, 53–60.

    • Crossref
    • PubMed
    • Export Citation
  • Warren, G. and Wickner, W. (1996). Organelle inheritance. Cell 84, 395–400.

    • Crossref
    • PubMed
    • Export Citation
  • Weisman, L.S. (2006). Organelles on the move: insights from yeast vacuole inheritance. Nat. Rev. Mol. Cell Biol. 7, 243–252.

    • Crossref
    • PubMed
    • Export Citation
  • Westermann, B. (2010). Mitochondrial fusion and fission in cell life and death. Nat. Rev. Mol. Cell Biol. 11, 872–884.

    • Crossref
    • PubMed
    • Export Citation
  • Westermann, B. (2014). Mitochondrial inheritance in yeast. Biochim. Biophys. Acta 1837, 1039–1046.

    • Crossref
    • PubMed
    • Export Citation
  • Westermann, B. (2015). The mitochondria-plasma membrane contact site. Curr. Opin. Cell Biol. 35, 1–6.

    • Crossref
    • PubMed
    • Export Citation
  • Xu, L. and Bretscher, A. (2014). Rapid glucose depletion immobilizes active myosin V on stabilized actin cables. Curr. Biol. 24, 2471–2479.

    • Crossref
    • PubMed
    • Export Citation
  • Yang, H.C., Palazzo, A., Swayne, T.C., and Pon, L.A. (1999). A retention mechanism for distribution of mitochondria during cell division in budding yeast. Curr. Biol. 9, 1111–1114.

    • Crossref
    • PubMed
    • Export Citation
  • Yu, J.W., Mendrola, J.M., Audhya, A., Singh, S., Keleti, D., DeWald, D.B., Murray, D., Emr, S.D., and Lemmon, M.A. (2004). Genome-wide analysis of membrane targeting by S. cerevisiae pleckstrin homology domains. Mol. Cell 13, 677–688.

    • Crossref
    • Export Citation
  • Zhou, C., Slaughter, B.D., Unruh, J.R., Guo, F., Yu, Z., Mickey, K., Narkar, A., Ross, R.T., McClain, M., and Li, R. (2014). Organelle-based aggregation and retention of damaged proteins in asymmetrically dividing cells. Cell 159, 530–542.

    • Crossref
    • PubMed
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Biological Chemistry keeps you up-to-date with the latest advances in the molecular life sciences. The journal publishes Research Articles, Short Communications, Reviews and Minireviews. Areas include: general biochemistry/pathobiochemistry, structural biology, molecular and cellular biology, genetics and epigenetics, virology, molecular medicine, plant molecular biology/biochemistry and novel experimental methodologies.

Search