The endoplasmic reticulum-mitochondria encounter structure: coordinating lipid metabolism across membranes

  • 1 Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
Benoît KornmannORCID iD: https://orcid.org/0000-0002-6030-8555

Abstract

Endosymbiosis, the beginning of a collaboration between an archaeon and a bacterium and a founding step in the evolution of eukaryotes, owes its success to the establishment of communication routes between the host and the symbiont to allow the exchange of metabolites. As far as lipids are concerned, it is the host that has learnt the symbiont’s language, as eukaryote lipids appear to have been borrowed from the bacterial symbiont. Mitochondria exchange lipids with the rest of the cell at membrane contact sites. In fungi, the endoplasmic reticulum-mitochondria encounter structure (ERMES) is one of the best understood membrane tethering complexes. Its discovery has yielded crucial insight into the mechanisms of intracellular lipid trafficking. Despite a wealth of data, our understanding of ERMES formation and its exact role(s) remains incomplete. Here, I endeavour to summarise our knowledge on the ERMES complex and to identify lingering gaps.

  • AhYoung, A.P., Jiang, J., Zhang, J., Khoi Dang, X., Loo, J.A., Zhou, Z.H., and Egea, P.F. (2015). Conserved SMP domains of the ERMES complex bind phospholipids and mediate tether assembly. Proc. Natl. Acad. Sci. USA 112, E3179–E3188.

    • Crossref
    • Export Citation
  • AhYoung, A.P., Lu, B., Cascio, D., and Egea, P.F. (2017). Crystal structure of Mdm12 and combinatorial reconstitution of Mdm12/Mmm1 ERMES complexes for structural studies. Bioch. Biophys. Res. Commun. 488, 129–135.

    • Crossref
    • Export Citation
  • Araiso, Y., Tsutsumi, A., Qiu, J., Imai, K., Shiota, T., Song, J., Lindau, C., Wenz, L.-S., Sakaue, H., Yunoki, K., et al. (2019). Structure of the mitochondrial import gate reveals distinct preprotein paths. Nature 575, 395–401.

    • PubMed
    • Export Citation
  • Balla, T., Kim, Y.J., Alvarez-Prats, A., and Pemberton, J. (2019). Lipid dynamics at contact sites between the endoplasmic reticulum and other organelles. Annu. Rev. Cell Dev. Biol. 35, 85–109.

    • Crossref
    • PubMed
    • Export Citation
  • Baum, D.A. and Baum, B. (2014). An inside-out origin for the eukaryotic cell. BMC Biol. 12, 76.

    • Crossref
    • PubMed
    • Export Citation
  • Bausewein, T., Mills, D.J., Langer, J.D., Nitschke, B., Nussberger, S., and Kühlbrandt, W. (2017). Cryo-EM structure of the TOM core complex from Neurospora crassa. Cell 170, 693–700.e7.

    • Crossref
    • PubMed
    • Export Citation
  • Bean, B.D.M., Dziurdzik, S.K., Kolehmainen, K.L., Fowler, C.M.S., Kwong, W.K., Grad, L.I., Davey, M., Schluter, C., and Conibear, E. (2018). Competitive organelle-specific adaptors recruit Vps13 to membrane contact sites. J. Cell Biol. 217, 3593–3607.

    • Crossref
    • PubMed
    • Export Citation
  • Berger, K.H., Sogo, L.F., and Yaffe, M.P. (1997). Mdm12p, a component required for mitochondrial inheritance that is conserved between budding and fission yeast. J. Cell Biol. 136, 545–553.

    • Crossref
    • PubMed
    • Export Citation
  • Boldogh, I., Nowakowski, D.W., Yang, H.-C., Chung, H., Karmon, S., Royes, P., and Pon, L.A. (2003). A protein complex containing Mdm10p, Mdm12p, and Mmm1p links mitochondrial membranes and DNA to the cytoskeleton-based segregation machinery. Mol. Biol. Cell 14, 4618–4627.

    • Crossref
    • PubMed
    • Export Citation
  • Burgess, S.M., Delannoy, M., and Jensen, R.E. (1994). MMM1 encodes a mitochondrial outer membrane protein essential for establishing and maintaining the structure of yeast mitochondria. J. Cell Biol. 126, 1375–1391.

    • Crossref
    • PubMed
    • Export Citation
  • Chowdhury, S., Otomo, C., Leitner, A., Ohashi, K., Aebersold, R., Lander, G.C., and Otomo, T. (2018). Insights into autophagosome biogenesis from structural and biochemical analyses of the ATG2A-WIPI4 complex. Proc. Natl. Acad. Sci. USA 115, E9792–E9801.

    • Crossref
    • Export Citation
  • Collado, J., Kalemanov, M., Campelo, F., Bourgoint, C., Thomas, F., Loewith, R., Martínez-Sánchez, A., Baumeister, W., Stefan, C.J., and Fernández-Busnadiego, R. (2019). Tricalbin-mediated contact sites control ER curvature to maintain plasma membrane integrity. Dev. Cell 51, 476–487.e7.

    • Crossref
    • PubMed
    • Export Citation
  • Creutz, C.E., Snyder, S.L., and Schulz, T.A. (2004). Characterization of the yeast tricalbins: membrane-bound multi-C2-domain proteins that form complexes involved in membrane trafficking. Cell. Mol. Life Sci. 61, 1208–1220.

    • Crossref
    • PubMed
    • Export Citation
  • Csordás, G., Renken, C., Várnai, P., Walter, L., Weaver, D., Buttle, K.F., Balla, T., Mannella, C.A., and Hajnóczky, G. (2006). Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol. 174, 915–921.

    • Crossref
    • PubMed
    • Export Citation
  • Daum, G. and Vance, J. (1997). Import of lipids into mitochondria. Prog. Lipid Res. 36, 103–130.

    • Crossref
    • PubMed
    • Export Citation
  • De, M., Oleskie, A.N., Ayyash, M., Dutta, S., Mancour, L., Abazeed, M.E., Brace, E.J., Skiniotis, G., and Fuller, R.S. (2017). The Vps13p-Cdc31p complex is directly required for TGN late endosome transport and TGN homotypic fusion. J. Cell Biol. 216, 425–439.

    • Crossref
    • PubMed
    • Export Citation
  • Dittman, J.S. and Menon, A.K. (2017). Speed limits for nonvesicular intracellular sterol transport. Trends Bioch. Sci. 42, 90–97.

    • Crossref
    • Export Citation
  • Elbaz-Alon, Y., Rosenfeld-Gur, E., Shinder, V., Futerman, A.H., Geiger, T., and Schuldiner, M. (2014). A dynamic interface between vacuoles and mitochondria in yeast. Dev. Cell 30, 95–102.

    • Crossref
    • PubMed
    • Export Citation
  • Elbaz-Alon, Y., Eisenberg-Bord, M., Shinder, V., Stiller, S.B., Shimoni, E., Wiedemann, N., Geiger, T., and Schuldiner, M. (2015). Lam6 regulates the extent of contacts between organelles. Cell Rep. 12, 7–14.

    • Crossref
    • PubMed
    • Export Citation
  • Ellenrieder, L., Opaliński, Ł., Becker, L., Krüger, V., Mirus, O., Straub, S.P., Ebell, K., Flinner, N., Stiller, S.B., Guiard, B., et al. (2016). Separating mitochondrial protein assembly and endoplasmic reticulum tethering by selective coupling of Mdm10. Nat. Commun. 7, 13021.

    • Crossref
    • PubMed
    • Export Citation
  • Flinner, N., Ellenrieder, L., Stiller, S.B., Becker, T., Schleiff, E., and Mirus, O. (2013). Mdm10 is an ancient eukaryotic porin co-occurring with the ERMES complex. Biochim. Biophys. Acta 1833, 3314–3325.

    • Crossref
    • PubMed
    • Export Citation
  • Friedman, J.R., Kannan, M., Toulmay, A., Jan, C.H., Weissman, J.S., Prinz, W.A., and Nunnari, J. (2018). Lipid homeostasis is maintained by dual targeting of the mitochondrial PE biosynthesis enzyme to the ER. Dev. Cell 44, 261–270.e6.

    • Crossref
    • PubMed
    • Export Citation
  • González Montoro, A., Auffarth, K., Hönscher, C., Bohnert, M., Becker, T., Warscheid, B., Reggiori, F., van der Laan, M., Fröhlich, F., and Ungermann, C. (2018). Vps39 interacts with Tom40 to establish one of two functionally distinct vacuole-mitochondria contact sites. Dev. Cell 45, 621–636.e7.

    • Crossref
    • PubMed
    • Export Citation
  • Gray, M.W. and Doolittle, W.F. (1982). Has the endosymbiont hypothesis been proven? Microbiol. Rev. 46, 1–42.

    • Crossref
    • PubMed
    • Export Citation
  • Guillén-Samander, A., Bian, X., and De Camilli, P. (2019). PDZD8 mediates a Rab7-dependent interaction of the ER with late endosomes and lysosomes. Proc. Natl. Acad. Sci. USA 116, 22619–22623.

    • Crossref
    • Export Citation
  • Hirabayashi, Y., Kwon, S.-K., Paek, H., Pernice, W.M., Paul, M.A., Lee, J., Erfani, P., Raczkowski, A., Petrey, D.S., Pon, L.A., et al. (2017). ER-mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons. Science 358, 623–630.

    • Crossref
    • PubMed
    • Export Citation
  • Ho, B., Baryshnikova, A., and Brown, G.W. (2018). Unification of protein abundance datasets yields a quantitative Saccharomyces cerevisiae proteome. Cell Syst. 6, 192–205.e3.

    • Crossref
    • PubMed
    • Export Citation
  • Hoffmann, P.C., Bharat, T.A.M., Wozny, M.R., Boulanger, J., Miller, E.A., and Kukulski, W. (2019). Tricalbins contribute to cellular lipid flux and form curved ER-PM contacts that are bridged by rod-shaped structures. Dev. Cell 51, 488–502.e8.

    • Crossref
    • PubMed
    • Export Citation
  • Hönscher, C., Mari, M., Auffarth, K., Bohnert, M., Griffith, J., Geerts, W., van der Laan, M., Cabrera, M., Reggiori, F., and Ungermann, C. (2014). Cellular metabolism regulates contact sites between vacuoles and mitochondria. Dev. Cell 30, 86–94.

    • Crossref
    • PubMed
    • Export Citation
  • Imachi, H., Nobu, M.K., Nakahara, N., Morono, Y., Ogawara, M., Takaki, Y., Takano, Y., Uematsu, K., Ikuta, T., Ito, M., et al. (2020). Isolation of an archaeon at the prokaryote-eukaryote interface. Nature 577, 519–525.

    • Crossref
    • PubMed
    • Export Citation
  • Jeong, H., Park, J., and Lee, C. (2016). Crystal structure of Mdm12 reveals the architecture and dynamic organization of the ERMES complex. EMBO Rep. 17, 1857–1871.

    • Crossref
    • PubMed
    • Export Citation
  • Jeong, H., Park, J., Jun, Y., and Lee, C. (2017). Crystal structures of Mmm1 and Mdm12–Mmm1 reveal mechanistic insight into phospholipid trafficking at ER-mitochondria contact sites. Proc. Natl. Acad. Sci. USA 114, E9502–E9511.

    • Crossref
    • Export Citation
  • John Peter, A.T., Herrmann, B., Antunes, D., Rapaport, D., Dimmer, K.S., and Kornmann, B. (2017). Vps13-Mcp1 interact at vacuole-mitochondria interfaces and bypass ER-mitochondria contact sites. J. Cell Biol. 216, 3219–3229.

    • Crossref
    • PubMed
    • Export Citation
  • Jones, J.D. and Thompson, T.E. (1990). Mechanism of spontaneous, concentration-dependent phospholipid transfer between bilayers. Biochemistry 29, 1593–1600.

    • Crossref
    • PubMed
    • Export Citation
  • Kawano, S., Tamura, Y., Kojima, R., Bala, S., Asai, E., Michel, A.H., Kornmann, B., Riezman, I., Riezman, H., Sakae, Y., et al. (2018). Structure-function insights into direct lipid transfer between membranes by Mmm1-Mdm12 of ERMES. J. Cell Biol. 217, 959–974.

    • Crossref
    • PubMed
    • Export Citation
  • Khelashvili, G., Chauhan, N., Pandey, K., Eliezer, D., and Menon, A.K. (2019). Exchange of water for sterol underlies sterol egress from a StARkin domain. eLife 8, pii: e53444.

    • PubMed
    • Export Citation
  • Kojima, R., Kajiura, S., Sesaki, H., Endo, T., and Tamura, Y. (2016). Identification of multi-copy suppressors for endoplasmic reticulum-mitochondria tethering proteins in Saccharomyces cerevisiae. FEBS Lett. 590, 3061–3070.

    • Crossref
    • PubMed
    • Export Citation
  • Kondo-Okamoto, N., Shaw, J.M., and Okamoto, K. (2003). Mmm1p spans both the outer and inner mitochondrial membranes and contains distinct domains for targeting and foci formation. J. Biol. Chem.278, 48997–49005.

    • Crossref
    • PubMed
    • Export Citation
  • Kopec, K.O., Alva, V., and Lupas, A.N. (2010). Homology of SMP domains to the TULIP superfamily of lipid-binding proteins provides a structural basis for lipid exchange between ER and mitochondria. Bioinformatics 26, 1927–1931.

    • Crossref
    • PubMed
    • Export Citation
  • Kornmann, B., Currie, E., Collins, S.R., Schuldiner, M., Nunnari, J., Weissman, J.S., and Walter, P. (2009). An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325, 477–481.

    • Crossref
    • PubMed
    • Export Citation
  • Kornmann, B., Osman, C., and Walter, P. (2011). The conserved GTPase Gem1 regulates endoplasmic reticulum-mitochondria connections. Proc. Natl. Acad. Sci. USA 108, 14151–14156.

    • Crossref
    • Export Citation
  • Kumar, N., Leonzino, M., Hancock-Cerutti, W., Horenkamp, F.A., Li, P., Lees, J.A., Wheeler, H., Reinisch, K.M., and De Camilli, P. (2018). VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J. Cell Biol. 217, 3625–3639.

    • Crossref
    • PubMed
    • Export Citation
  • Lang, A.B., Peter, A.T.J., Walter, P., and Kornmann, B. (2015). ER-mitochondrial junctions can be bypassed by dominant mutations in the endosomal protein Vps13. J. Cell Biol. 210, 883–890.

    • Crossref
    • PubMed
    • Export Citation
  • Lee, I. and Hong, W. (2006). Diverse membrane-associated proteins contain a novel SMP domain. FASEB J. 20, 202–206.

    • Crossref
    • PubMed
    • Export Citation
  • Liu, L.-K., Choudhary, V., Toulmay, A., and Prinz, W.A. (2017). An inducible ER-Golgi tether facilitates ceramide transport to alleviate lipotoxicity. J. Cell Biol. 216, 131–147.

    • Crossref
    • PubMed
    • Export Citation
  • Lombard, J., López-García, P., and Moreira, D. (2012). The early evolution of lipid membranes and the three domains of life. Nat. Rev. Microbiol. 10, 507–515.

    • Crossref
    • PubMed
    • Export Citation
  • Mari, M., Tooze, S.A., and Reggiori, F. (2011). The puzzling origin of the autophagosomal membrane. F1000 Biol. Rep. 3.

    • PubMed
    • Export Citation
  • Martin, W.F., Garg, S., and Zimorski, V. (2015). Endosymbiotic theories for eukaryote origin. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 370, 20140330.

    • Crossref
    • PubMed
    • Export Citation
  • Meisinger, C., Rissler, M., Chacinska, A., Szklarz, L.K.S., Milenkovic, D., Kozjak, V., Schönfisch, B., Lohaus, C., Meyer, H.E., Yaffe, M.P., et al. (2004). The mitochondrial morphology protein Mdm10 functions in assembly of the preprotein translocase of the outer membrane. Dev. Cell 7, 61–71.

    • Crossref
    • PubMed
    • Export Citation
  • Michel, A.H., Hatakeyama, R., Kimmig, P., Arter, M., Peter, M., Matos, J., De Virgilio, C., and Kornmann, B. (2017). Functional mapping of yeast genomes by saturated transposition. eLife 6, pii: e23570.

    • PubMed
    • Export Citation
  • Murley, A., Sarsam, R.D., Toulmay, A., Yamada, J., Prinz, W.A., and Nunnari, J. (2015). Ltc1 is an ER-localized sterol transporter and a component of ER-mitochondria and ER-vacuole contacts. J. Cell Biol. 209, 539–548.

    • Crossref
    • Export Citation
  • Osawa, T., Kotani, T., Kawaoka, T., Hirata, E., Suzuki, K., Nakatogawa, H., Ohsumi, Y., and Noda, N.N. (2019). Atg2 mediates direct lipid transfer between membranes for autophagosome formation. Nat. Struct. Mol. Biol. 26, 281–288.

    • Crossref
    • PubMed
    • Export Citation
  • Otomo, T. and Maeda, S. (2019). ATG2A transfers lipids between membranes in vitro. Autophagy. 15, 2031–2032.

    • Crossref
    • PubMed
    • Export Citation
  • Otomo, T., Chowdhury, S., and Lander, G.C. (2018). The rod-shaped ATG2A-WIPI4 complex tethers membranes in vitro. Contact 1. doi: 10.1177/2515256418819936.

    • PubMed
    • Export Citation
  • Park, J.-S., Thorsness, M.K., Policastro, R., McGoldrick, L.L., Hollingsworth, N.M., Thorsness, P.E., and Neiman, A.M. (2016). Yeast Vps13 promotes mitochondrial function and is localized at membrane contact sites. Mol. Biol. Cell 27, 2435–2449.

    • Crossref
    • PubMed
    • Export Citation
  • Petrungaro, C., and Kornmann, B. (2019). Lipid exchange at ER-mitochondria contact sites: a puzzle falling into place with quite a few pieces missing. Curr. Opin. Cell Biol. 57, 71–76.

    • Crossref
    • Export Citation
  • Robertson, J.D. (1960). The molecular structure and contact relationships of cell membranes. Prog. Biophys. Mol. Biol. 10, 343–418.

    • PubMed
    • Export Citation
  • Sagan, L. (1967). On the origin of mitosing cells. J. Theor. Biol. 14, 255–274.

    • PubMed
    • Export Citation
  • Saheki, Y., Bian, X., Schauder, C.M., Sawaki, Y., Surma, M.A., Klose, C., Pincet, F., Reinisch, K.M., and De Camilli, P. (2016). Control of plasma membrane lipid homeostasis by the extended synaptotagmins. Nat. Cell Biol. 18, 504–515.

    • Crossref
    • PubMed
    • Export Citation
  • Schauder, C.M., Wu, X., Saheki, Y., Narayanaswamy, P., Torta, F., Wenk, M.R., De Camilli, P., and Reinisch, K.M. (2014). Structure of a lipid-bound extended synaptotagmin indicates a role in lipid transfer. Nature 510, 552–555.

    • Crossref
    • PubMed
    • Export Citation
  • Schleyer, M. and Neupert, W. (1985). Transport of proteins into mitochondria: Translocational intermediates spanning contact sites between outer and inner membranes. Cell 43, 339–350.

    • Crossref
    • PubMed
    • Export Citation
  • Sogo, L.F. and Yaffe, M.P. (1994). Regulation of mitochondrial morphology and inheritance by Mdm10p, a protein of the mitochondrial outer membrane. J. Cell Biol. 126, 1361–1373.

    • Crossref
    • PubMed
    • Export Citation
  • Stroud, D.A., Oeljeklaus, S., Wiese, S., Bohnert, M., Lewandrowski, U., Sickmann, A., Guiard, B., van der Laan, M., Warscheid, B., and Wiedemann, N. (2011). Composition and topology of the endoplasmic reticulum-mitochondria encounter structure. J. Mol. Biol. 413, 743–750.

    • Crossref
    • PubMed
    • Export Citation
  • Tan, T., Ozbalci, C., Brugger, B., Rapaport, D., and Dimmer, K.S. (2013). Mcp1 and Mcp2, two novel proteins involved in mitochondrial lipid homeostasis. J. Cell Sci. 126, 3563–3574.

    • Crossref
    • PubMed
    • Export Citation
  • Tooze, S.A. and Yoshimori, T. (2010). The origin of the autophagosomal membrane. Nat. Cell Biol. 12, 831–835.

    • Crossref
    • PubMed
    • Export Citation
  • Toulmay, A. and Prinz, W.A. (2012). A conserved membrane-binding domain targets proteins to organelle contact sites. J. Cell Sci. 125, 49–58.

    • Crossref
    • PubMed
    • Export Citation
  • Tucker, K. and Park, E. (2019). Cryo-EM structure of the mitochondrial protein-import channel TOM complex at near-atomic resolution. Nat. Struct. Mol. Biol. 26, 1158–1166.

    • Crossref
    • PubMed
    • Export Citation
  • Valverde, D.P., Yu, S., Boggavarapu, V., Kumar, N., Lees, J.A., Walz, T., Reinisch, K.M., and Melia, T.J. (2019). ATG2 transports lipids to promote autophagosome biogenesis. J. Cell Biol. 218, 1787–1798.

    • Crossref
    • PubMed
    • Export Citation
  • Vance, J.E. (1990). Phospholipid synthesis in a membrane fraction associated with mitochondria. J. Biol. Chem. 265, 7248–7256.

  • Vance, J.E., Aasman, E.J., and Szarka, R. (1991). Brefeldin A does not inhibit the movement of phosphatidylethanolamine from its sites for synthesis to the cell surface. J. Biol. Chem.266, 8241–8247.

    • PubMed
    • Export Citation
  • Wideman, J.G., Go, N.E., Klein, A., Redmond, E., Lackey, S.W.K., Tao, T., Kalbacher, H., Rapaport, D., Neupert, W., and Nargang, F.E. (2010). Roles of the Mdm10, Tom7, Mdm12, and Mmm1 proteins in the assembly of mitochondrial outer membrane proteins in Neurospora crassa. Mol. Biol. Cell 21, 1725–1736.

    • Crossref
    • PubMed
    • Export Citation
  • Wideman, J.G., Gawryluk, R.M.R., Gray, M.W., and Dacks, J.B. (2013). The ancient and widespread nature of the ER-mitochondria encounter structure. Mol. Biol. Evol. 30, 2044–2049.

    • Crossref
    • PubMed
    • Export Citation
  • Wideman, J.G., Balacco, D.L., Fieblinger, T., and Richards, T.A. (2018). PDZD8 is not the “functional ortholog” of Mmm1, it is a paralog. F1000 Res. 7, 1088.

    • Crossref
    • Export Citation
  • Yamano, K., Tanaka-Yamano, S., and Endo, T. (2010). Tom7 regulates Mdm10-mediated assembly of the mitochondrial import channel protein Tom40. J. Biol. Chem.285, 41222–41231.

    • Crossref
    • PubMed
    • Export Citation
  • Zaremba-Niedzwiedzka, K., Caceres, E.F., Saw, J.H., Bäckström, D., Juzokaite, L., Vancaester, E., Seitz, K.W., Anantharaman, K., Starnawski, P., Kjeldsen, K.U., et al. (2017). Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358.

    • Crossref
    • PubMed
    • Export Citation
  • Zheng, J.-X., Li, Y., Ding, Y.-H., Liu, J.-J., Zhang, M.-J., Dong, M.-Q., Wang, H.-W., and Yu, L. (2017). Architecture of the ATG2B-WDR45 complex and an aromatic Y/HF motif crucial for complex formation. Autophagy 13, 1870–1883.

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Biological Chemistry keeps you up-to-date with the latest advances in the molecular life sciences. The journal publishes Research Articles, Short Communications, Reviews and Minireviews. Areas include: general biochemistry/pathobiochemistry, structural biology, molecular and cellular biology, genetics and epigenetics, virology, molecular medicine, plant molecular biology/biochemistry and novel experimental methodologies.

Search