PINK1 and Parkin: team players in stress-induced mitophagy

Verian Bader 1  and Konstanze F. Winklhofer 1
  • 1 Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Universitätsstrasse 150, D-44801, Bochum, Germany
Verian Bader
  • Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Universitätsstrasse 150, D-44801, Bochum, Germany
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Konstanze F. WinklhoferORCID iD: https://orcid.org/0000-0002-7256-8231

Abstract

Mitochondria are highly vulnerable organelles based on their complex biogenesis, entailing dependence on nuclear gene expression and efficient import strategies. They are implicated in a wide spectrum of vital cellular functions, including oxidative phosphorylation, iron-sulfur cluster synthesis, regulation of calcium homeostasis, and apoptosis. Moreover, damaged mitochondria can release mitochondrial components, such as mtDNA or cardiolipin, which are sensed as danger-associated molecular patterns and trigger innate immune signaling. Thus, dysfunctional mitochondria pose a thread not only to the cellular but also to the organismal integrity. The elimination of dysfunctional and damaged mitochondria by selective autophagy, called mitophagy, is a major mechanism of mitochondrial quality control. Certain types of stress-induced mitophagy are regulated by the mitochondrial kinase PINK1 and the E3 ubiquitin ligase Parkin, which are both linked to autosomal recessive Parkinson’s disease.

  • Aerts, L., Craessaerts, K., De Strooper, B., and Morais, V.A. (2015). PINK1 kinase catalytic activity is regulated by phosphorylation on serines 228 and 402. J. Biol. Chem 290: 2798–2811, https://doi.org/10.1074/jbc.M114.620906.

    • Crossref
    • PubMed
    • Export Citation
  • Allen, G.F., Toth, R., James, J., and Ganley, I.G. (2013). Loss of iron triggers PINK1/Parkin-independent mitophagy. EMBO Rep. 14: 1127–1135, https://doi.org/10.1038/embor.2013.168.

    • Crossref
    • PubMed
    • Export Citation
  • Altshuler-Keylin, S., Shinoda, K., Hasegawa, Y., Ikeda, K., Hong, H., Kang, Q., Yang, Y., Perera, R.M., Debnath, J., and Kajimura, S. (2016). Beige adipocyte maintenance is regulated by autophagy-induced mitochondrial clearance. Cell Metab 24: 402–419, https://doi.org/10.1016/j.cmet.2016.08.002.

    • Crossref
    • PubMed
    • Export Citation
  • Area-Gomez, E., Guardia-Laguarta, C., Schon, E.A., and Przedborski, S. (2019). Mitochondria, OxPhos, and neurodegeneration: cells are not just running out of gas. J. Clin. Invest 129: 34–45, https://doi.org/10.1172/JCI120848.

    • Crossref
    • PubMed
    • Export Citation
  • Ashford, T.P. and Porter, K.R. (1962). Cytoplasmic components in hepatic cell lysosomes. J. Cell Biol 12: 198–202, https://doi.org/10.1083/jcb.12.1.198.

    • Crossref
    • PubMed
    • Export Citation
  • Bader, V. and Winklhofer, K.F. (2020). Mitochondria at the interface between neurodegeneration and neuroinflammation. Semin. Cell Dev. Biol 99: 163–171.

    • Crossref
    • PubMed
    • Export Citation
  • Bayne, A.N. and Trempe, J.F. (2019). Mechanisms of PINK1, ubiquitin and Parkin interactions in mitochondrial quality control and beyond. Cell Mol Life Sci 76, 4589–4611, https://doi.org/10.3233/JAD-2010-100543.

    • Crossref
    • PubMed
    • Export Citation
  • Bingol, B., Tea, J.S., Phu, L., Reichelt, M., Bakalarski, C.E., Song, Q., Foreman, O., Kirkpatrick, D.S., and Sheng, M. (2014). The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 510: 370–375, https://doi.org/10.1038/nature13418.

    • Crossref
    • PubMed
    • Export Citation
  • Cairo, M., Campderros, L., Gavalda-Navarro, A., Cereijo, R., Delgado-Angles, A., Quesada-Lopez, T., Giralt, M., Villarroya, J., and Villarroya, F. (2019). Parkin controls brown adipose tissue plasticity in response to adaptive thermogenesis. EMBO Rep 20: e46832, https://doi.org/10.15252/embr.201846832.

    • PubMed
    • Export Citation
  • Chu, C.T., Ji, J., Dagda, R.K., Jiang, J.F., Tyurina, Y.Y., Kapralov, A.A., Tyurin, V.A., Yanamala, N., Shrivastava, I.H., Mohammadyani, D., et al. (2013). Cardiolipin externalization to the outer mitochondrial membrane acts as an elimination signal for mitophagy in neuronal cells. Nat. Cell Biol 15: 1197–1205, https://doi.org/10.1038/ncb2837.

    • Crossref
    • PubMed
    • Export Citation
  • Clark, S.L., Jr. (1957). Cellular differentiation in the kidneys of newborn mice studies with the electron microscope. J. Biophys. Biochem. Cytol 3: 349–362, https://doi.org/10.1083/jcb.3.3.349.

    • Crossref
    • PubMed
    • Export Citation
  • Csordas, G., Weaver, D., and Hajnoczky, G. (2018). Endoplasmic reticulum-mitochondrial contactology: structure and signaling functions. Trends Cell Biol 28: 523–540, https://doi.org/10.1016/j.tcb.2018.02.009.

    • Crossref
    • PubMed
    • Export Citation
  • Cunningham, C.N., Baughman, J.M., Phu, L., Tea, J.S., Yu, C., Coons, M., Kirkpatrick, D.S., Bingol, B., and Corn, J.E. (2015). USP30 and parkin homeostatically regulate atypical ubiquitin chains on mitochondria. Nat. Cell Biol 17: 160–169, https://doi.org/10.1038/ncb3097.

    • Crossref
    • PubMed
    • Export Citation
  • Deas, E., Plun-Favreau, H., Gandhi, S., Desmond, H., Kjaer, S., Loh, S.H., Renton, A.E., Harvey, R.J., Whitworth, A.J., Martins, L.M., et al. (2011). PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum. Mol. Genet 20: 867–879, https://doi.org/10.1093/hmg/ddq526.

    • Crossref
    • PubMed
    • Export Citation
  • Deshwal, S., Fiedler, K.U., and Langer, T. (2020). Mitochondrial proteases: multifaceted regulators of mitochondrial plasticity. Annu. Rev. Biochem. https://doi.org/10.1146/annurev-biochem-062917-012739.

    • PubMed
    • Export Citation
  • Durcan, T.M. and Fon, E.A. (2015). The three 'P's of mitophagy: PARKIN, PINK1, and post-translational modifications. Genes Dev 29: 989–999, https://doi.org/10.1101/gad.262758.115.

    • Crossref
    • PubMed
    • Export Citation
  • Duve, C.D. (1963). General properties of lysosomes: the lysosome concept. Lysosymes 1–35, https://doi.org/10.1002/9780470715314.ch1.

  • Exner, N., Lutz, A.K., Haass, C., and Winklhofer, K.F. (2012). Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences. EMBO J. 31, 3038–3062, DOI; https://doi.org/10.1038/emboj.2012.170.

    • Crossref
    • PubMed
    • Export Citation
  • Friedman, J.R. and Nunnari, J. (2014). Mitochondrial form and function. Nature 505: 335–343, https://doi.org/10.1038/nature12985.

    • Crossref
    • PubMed
    • Export Citation
  • Ganley, I.G. (2018). Organelle turnover: a USP30 safety catch restrains the trigger for mitophagy and pexophagy. Curr. Biol 28: R842–R845, https://doi.org/10.1016/j.cub.2018.06.067.

    • Crossref
    • PubMed
    • Export Citation
  • Ge, P., Dawson, V.L., and Dawson, T.M. (2020). PINK1 and Parkin mitochondrial quality control: a source of regional vulnerability in Parkinson's disease. Mol. Neurodegener 15: 20, https://doi.org/10.1186/s13024-020-00367-7.

    • Crossref
    • PubMed
    • Export Citation
  • Geisler, S., Holmstrom, K.M., Skujat, D., Fiesel, F.C., Rothfuss, O.C., Kahle, P.J., and Springer, W. (2010). PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol 12: 119–131, https://doi.org/10.1038/ncb2012.

    • Crossref
    • PubMed
    • Export Citation
  • Gersch, M., Gladkova, C., Schubert, A.F., Michel, M.A., Maslen, S., and Komander, D. (2017). Mechanism and regulation of the Lys6-selective deubiquitinase USP30. Nat. Struct. Mol. Biol 24: 920–930, https://doi.org/10.1038/nsmb.3475.

    • Crossref
    • PubMed
    • Export Citation
  • Gomes, L.C., Di Benedetto, G., and Scorrano, L. (2011). During autophagy mitochondria elongate, are spared from degradation and sustain cell viability. Nat. Cell Biol 13: 589–598, https://doi.org/10.1038/ncb2220.

    • Crossref
    • PubMed
    • Export Citation
  • Greene, A.W., Grenier, K., Aguileta, M.A., Muise, S., Farazifard, R., Haque, M.E., McBride, H.M., Park, D.S., and Fon, E.A. (2012). Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep 13: 378–385, https://doi.org/10.1038/embor.2012.14.

    • Crossref
    • PubMed
    • Export Citation
  • Hammerling, B.C., Najor, R.H., Cortez, M.Q., Shires, S.E., Leon, L.J., Gonzalez, E.R., Boassa, D., Phan, S., Thor, A., Jimenez, R.E. et al. (2017). A Rab5 endosomal pathway mediates Parkin-dependent mitochondrial clearance. Nat. Commun 8: 14050, https://doi.org/10.1038/ncomms14050.

    • Crossref
    • PubMed
    • Export Citation
  • Hasson, S.A., Kane, L.A., Yamano, K., Huang, C.H., Sliter, D.A., Buehler, E., Wang, C., Heman-Ackah, S.M., Hessa, T., Guha, R., et al. (2013). High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature 504: 291–295, https://doi.org/10.1038/nature12748.

    • Crossref
    • PubMed
    • Export Citation
  • Heo, J.M., Ordureau, A., Paulo, J.A., Rinehart, J., and Harper, J.W. (2015). The PINK1-PARKIN mitochondrial Ubiquitylation pathway drives a program of OPTN/NDP52 recruitment and TBK1 activation to promote mitophagy. Mol. Cell 60: 7–20, https://doi.org/10.1016/j.molcel.2015.08.016.

    • Crossref
    • PubMed
    • Export Citation
  • Hernandez, G., Thornton, C., Stotland, A., Lui, D., Sin, J., Ramil, J., Magee, N., Andres, A., Quarato, G., Carreira, R.S., et al. (2013). MitoTimer: a novel tool for monitoring mitochondrial turnover. Autophagy 9: 1852–61, https://doi.org/10.4161/auto.2650110.4161/auto.26501.

    • Crossref
    • PubMed
    • Export Citation
  • Hsu, F., Spannl, S., Ferguson, C., Hyman, A.A., Parton, R.G., and Zerial, M. (2018). Rab5 and Alsin regulate stress-activated cytoprotective signaling on mitochondria. Elife 7: e32282, https://doi.org/10.7554/eLife.32282.

    • PubMed
    • Export Citation
  • Iguchi, M., Kujuro, Y., Okatsu, K., Koyano, F., Kosako, H., Kimura, M., Suzuki, N., Uchiyama, S., Tanaka, K., and Matsuda, N. (2013). Parkin-catalyzed ubiquitin-ester transfer is triggered by PINK1-dependent phosphorylation. J. Biol. Chem 288: 22019–220932, https://doi.org/10.1074/jbc.M113.467530.

    • Crossref
    • PubMed
    • Export Citation
  • Jin, S.M., Lazarou, M., Wang, C., Kane, L.A., Narendra, D.P., and Youle, R.J. (2010). Mitochondrial membrane potential regulates PINK1 import and proteolytic destabilization by PARL. J. Cell Biol 191: 933–942, https://doi.org/10.1083/jcb.201008084.

    • Crossref
    • PubMed
    • Export Citation
  • Kane, L.A., Lazarou, M., Fogel, A.I., Li, Y., Yamano, K., Sarraf, S.A., Banerjee, S., Youle, R.J. (2014). PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J. Cell. Biol 205: 143–153, https://doi.org/10.1083/jcb.201402104.

    • Crossref
    • PubMed
    • Export Citation
  • Kanki, T, Wang, K, Cao, Y, Baba, M, Klionsky, DJ (2009). Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev. Cell 17: 98–109, https://doi.org/10.1016/j.devcel.2009.06.014.

    • Crossref
    • PubMed
    • Export Citation
  • Karbowski, M. and Youle, R.J. (2011). Regulating mitochondrial outer membrane proteins by ubiquitination and proteasomal degradation. Curr. Opin. Cell Biol 23: 476–482, https://doi.org/10.1016/j.ceb.2011.05.007.

    • Crossref
    • PubMed
    • Export Citation
  • Katayama, H., Kogure, T., Mizushima, N., Yoshimori, T., and Miyawaki, A. (2011). A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem. Biol 18: 1042–1052, https://doi.org/10.1016/j.chembiol.2011.05.013.

    • Crossref
    • PubMed
    • Export Citation
  • Kauppila, T.E.S, Kauppila, J.H.K., and Larsson, N.G. (2017). Mammalian mitochondria and aging: an update. Cell Metab 25: 57–71, https://doi.org/10.1016/j.cmet.2016.09.017.

    • Crossref
    • PubMed
    • Export Citation
  • Kazlauskaite, A., Kondapalli, C., Gourlay, R., Campbell, D.G., Ritorto, M.S., Hofmann, K., Alessi, D.R., Knebel, A., Trost, M., and Muqit, M.M. (2014). Parkin is activated by PINK1-dependent phosphorylation of ubiquitin at Ser65. Biochem. J 460: 127–139, https://doi.org/10.1042/BJ20140334.

    • Crossref
    • PubMed
    • Export Citation
  • Kazlauskaite, A., Martinez-Torres, R.J., Wilkie, S., Kumar, A., Peltier, J., Gonzalez, A., Johnson, C., Zhang, J., Hope, A.G., Peggie, M., et al. (2015). Binding to serine 65-phosphorylated ubiquitin primes Parkin for optimal PINK1-dependent phosphorylation and activation. EMBO Rep 16: 939–954, https://doi.org/10.15252/embr.201540352.

    • Crossref
    • PubMed
    • Export Citation
  • Kondapalli, C., Kazlauskaite, A., Zhang, N., Woodroof, H.I., Campbell, D.G., Gourlay, R., Burchell, L., Walden, H., Macartney, T.J., Deak, M., et al. (2012). PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65. Open Biol 2: 120080, https://doi.org/10.1098/rsob.120080.

    • Crossref
    • PubMed
    • Export Citation
  • Koyano, F., Okatsu, K., Kosako, H., Tamura, Y., Go, E., Kimura, M., Kimura, Y., Tsuchiya, H., Yoshihara, H., Hirokawa, T., et al. (2014). Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 510: 162–166, https://doi.org/10.1038/nature13392.

    • Crossref
    • PubMed
    • Export Citation
  • Kumar, A., Aguirre, J.D., Condos, T.E., Martinez-Torres, R.J., Chaugule, V.K., Toth, R., Sundaramoorthy, R., Mercier, P., Knebel, A., Spratt, D.E., et al. (2015). Disruption of the autoinhibited state primes the E3 ligase parkin for activation and catalysis. EMBO J 34: 2506–2521, https://doi.org/10.15252/embj.201592337.

    • Crossref
    • PubMed
    • Export Citation
  • Lazarou, M., Jin, S.M., Kane, L.A., and Youle, R.J. (2012). Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev. Cell 22: 320–333, https://doi.org/10.1016/j.devcel.2011.12.014.

    • Crossref
    • PubMed
    • Export Citation
  • Lazarou, M., Sliter, D.A., Kane, L.A., Sarraf, S.A., Wang, C., Burman, J.L., Sideris, D.P., Fogel, A.I., and Youle, R.J. (2015). The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524: 309–314, https://doi.org/10.1038/nature14893.

    • Crossref
    • PubMed
    • Export Citation
  • Lee, J.J., Sanchez-Martinez, A., Zarate, A.M., Beninca, C., Mayor, U., Clague, M.J., and Whitworth, A.J. (2018). Basal mitophagy is widespread in Drosophila but minimally affected by loss of Pink1 or parkin. J. Cell Biol 217: 1613–1622, https://doi.org/10.1083/jcb.201801044.

    • Crossref
    • PubMed
    • Export Citation
  • Leites, E.P. and Morais, V.A. (2018). Mitochondrial quality control pathways: PINK1 acts as a gatekeeper. Biochem. Biophys. Res. Commun 500: 45–50, https://doi.org/10.1016/j.bbrc.2017.06.096.

    • Crossref
    • PubMed
    • Export Citation
  • Lemasters, J.J. (2005). Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 8: 3–5, https://doi.org/10.1089/rej.2005.8.3.

    • Crossref
    • PubMed
    • Export Citation
  • Lu, X., Altshuler-Keylin, S., Wang, Q., Chen, Y., Henrique Sponton, C., Ikeda, K., Maretich, P., Yoneshiro, T., and Kajimura, S. (2018). Mitophagy controls beige adipocyte maintenance through a Parkin-dependent and UCP1-independent mechanism. Sci. Signal 11: eaap8526, https://doi.org/10.1126/scisignal.aap8526.

    • PubMed
    • Export Citation
  • Martinez-Vicente, M. (2017). Neuronal mitophagy in neurodegenerative diseases. Front. Mol. Neurosci 10: 64, https://doi.org/10.3389/fnmol.2017.00064.

    • PubMed
    • Export Citation
  • Matheoud, D., Sugiura, A., Bellemare-Pelletier, A., Laplante, A., Rondeau, C., Chemali, M., Fazel, A., Bergeron, J.J., Trudeau, L.E., Burelle, Y., et al. (2016). Parkinson's disease-related proteins PINK1 and Parkin repress mitochondrial antigen presentation. Cell 166: 314–327, https://doi.org/10.1016/j.cell.2016.05.039.

    • Crossref
    • PubMed
    • Export Citation
  • Matsuda, N., Sato, S., Shiba, K., Okatsu, K., Saisho, K., Gautier, C.A., Sou, Y.S., Saiki, S., Kawajiri, S., Sato, F., et al. (2010). PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J. Cell Biol 189: 211–221, https://doi.org/10.1083/jcb.200910140.

    • Crossref
    • PubMed
    • Export Citation
  • McLelland, G.L., Goiran, T., Yi, W., Dorval, G., Chen, C.X., Lauinger, N.D., Krahn, A.I., Valimehr, S., Rakovic, A., Rouiller, I., et al. (2018). Mfn2 ubiquitination by PINK1/parkin gates the p97-dependent release of ER from mitochondria to drive mitophagy. Elife 7: e32866, https://doi.org/10.7554/eLife.32866.

    • PubMed
    • Export Citation
  • McLelland, G.L., Soubannier, V., Chen, C.X., McBride, H.M., and Fon, E.A. (2014). Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control. EMBO J 33: 282–295, https://doi.org/10.1002/embj.201385902.

  • McWilliams, T.G. and Ganley, I.G. (2019). Investigating mitophagy and mitochondrial morphology in vivo using mito-QC: a comprehensive guide. Methods Mol. Biol 1880: 621–642, https://doi.org/10.1007/978-1-4939-8873-0_41.

    • Crossref
    • PubMed
    • Export Citation
  • McWilliams, T.G. and Muqit, M.M. (2017). PINK1 and Parkin: emerging themes in mitochondrial homeostasis. Curr. Opin. Cell Biol 45: 83–91, https://doi.org/10.1016/j.ceb.2017.03.013.

    • Crossref
    • PubMed
    • Export Citation
  • McWilliams, T.G., Prescott, A.R., Allen, G.F., Tamjar, J., Munson, M.J., Thomson, C., Muqit, M.M., and Ganley, I.G. (2016). Mito-QC illuminates mitophagy and mitochondrial architecture in vivo. J. Cell Biol 214: 333–345, https://doi.org/10.1083/jcb.201603039.

    • Crossref
    • PubMed
    • Export Citation
  • McWilliams, T.G., Prescott, A.R., Montava-Garriga, L., Ball, G., Singh, F., Barini, E., Muqit, M.M.K., Brooks, S.P., and Ganley, I.G. (2018). Basal Mitophagy Occurs Independently of PINK1 in Mouse Tissues of High Metabolic Demand. Cell Metab 27: 439–449 e5, 10.1016/j.cmet.2017.12.008.

    • Crossref
    • PubMed
    • Export Citation
  • Meissner, C., Lorenz, H., Weihofen, A., Selkoe, D.J., and Lemberg, M.K. (2011). The mitochondrial intramembrane protease PARL cleaves human Pink1 to regulate Pink1 trafficking. J. Neurochem 117: 856–867, https://doi.org/10.1111/j.1471-4159.2011.07253.x.

    • Crossref
    • PubMed
    • Export Citation
  • Montava-Garriga, L., and Ganley, I.G. (2019). Outstanding questions in mitophagy: what we do and do not know. J. Mol. Biol 432: 206–230, https://doi.org/10.1016/j.jmb.2019.06.032.

  • Narendra, D., Tanaka, A., Suen, D.F., and Youle, R.J. (2008). Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell. Biol 183: 795–803, https://doi.org/10.1083/jcb.200809125.

    • Crossref
    • PubMed
    • Export Citation
  • Narendra, D.P., Jin, S.M., Tanaka, A., Suen, D.F., Gautier, C.A., Shen, J., Cookson, M.R., and Youle, R.J. (2010). PINK1 is selectively stabilized on impaired mitochondria to activate Parkin. PLoS Biol 8: e1000298, https://doi.org/10.1371/journal.pbio.1000298.

    • PubMed
    • Export Citation
  • Naresh, N.U. and Haynes, C.M. (2019). Signaling and regulation of the mitochondrial unfolded protein response. Cold Spring Harb. Perspect. Biol 11: a033944. https://doi.org/10.1101/cshperspect.a033944.

    • PubMed
    • Export Citation
  • Newman, L.E. and Shadel, G.S. (2018). Pink1/Parkin link inflammation, mitochondrial stress, and neurodegeneration. J. Cell Biol. 217: 3327–3329, https://doi.org/10.1083/jcb.201808118.

    • Crossref
    • PubMed
    • Export Citation
  • Novikoff, A.B. and Essner, E. (1962). Cytolysomes and mitochondrial degeneration. J. Cell Biol 15: 140–146, https://doi.org/10.1083/jcb.15.1.140.

    • Crossref
    • PubMed
    • Export Citation
  • Okamoto, K., Kondo-Okamoto, N., and Ohsumi, Y. (2009). Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev. Cell 17: 87–97, https://doi.org/10.1016/j.devcel.2009.06.013.

    • Crossref
    • PubMed
    • Export Citation
  • Okatsu, K., Koyano, F., Kimura, M., Kosako, H., Saeki, Y., Tanaka, K., and Matsuda, N. (2015). Phosphorylated ubiquitin chain is the genuine Parkin receptor. J. Cell Biol 209: 111–128, https://doi.org/10.1083/jcb.201410050.

    • Crossref
    • PubMed
    • Export Citation
  • Okatsu, K., Oka, T., Iguchi, M., Imamura, K., Kosako, H., Tani, N., Kimura, M., Go, E., Koyano, F., Funayama, M., et al. (2012). PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat. Commun 3: 1016, https://doi.org/10.1038/ncomms2016.

    • Crossref
    • PubMed
    • Export Citation
  • Okatsu, K., Uno, M., Koyano, F., Go, E., Kimura, M., Oka, T., Tanaka, K., Matsuda, N. (2013). A dimeric PINK1-containing complex on depolarized mitochondria stimulates Parkin recruitment. J. Biol. Chem 288: 36372–36384, https://doi.org/10.1074/jbc.M113.509653.

    • Crossref
    • PubMed
    • Export Citation
  • Ordureau, A., Paulo, J.A., Zhang, J., An, H., Swatek, K.N., Cannon, J.R., Wan, Q., Komander, D., and Harper, J.W. (2020). Global landscape and dynamics of parkin and USP30-dependent ubiquitylomes in neurons during mitophagic signaling. Mol. Cell 77: 1124–1142 e10, https://doi.org/10.1016/j.molcel.2019.11.013.

    • Crossref
    • PubMed
    • Export Citation
  • Ordureau, A., Paulo, J.A., Zhang, W., Ahfeldt, T., Zhang, J., Cohn, E.F., Hou, Z., Heo, J.M., Rubin, L.L., Sidhu, S.S., et al. (2018). Dynamics of PARKIN-dependent mitochondrial ubiquitylation in induced neurons and model systems revealed by digital snapshot proteomics. Mol. Cell 70: 211–227 e8, https://doi.org/10.1016/j.molcel.2018.03.012.

    • Crossref
    • PubMed
    • Export Citation
  • Ordureau, A., Sarraf, S.A., Duda, D.M., Heo, J.M., Jedrychowski, M.P., Sviderskiy, V.O., Olszewski, J.L., Koerber, J.T., Xie, T., Beausoleil, S.A., et al. (2014). Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol. Cell 56: 360–375, https://doi.org/10.1016/j.molcel.2014.09.007.

    • Crossref
    • PubMed
    • Export Citation
  • Palikaras, K., Lionaki, E., and Tavernarakis, N. (2018). Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat. Cell Biol 20: 1013–1022, https://doi.org/10.1038/s41556-018-0176-2.

    • Crossref
    • PubMed
    • Export Citation
  • Phillips, M.J., and Voeltz, G.K. (2016). Structure and function of ER membrane contact sites with other organelles. Nat. Rev. Mol. Cell Biol 17: 69–82, https://doi.org/10.1038/nrm.2015.8.

    • Crossref
    • PubMed
    • Export Citation
  • Phu, L., Rose, C.M., Tea, J.S., Wall, C.E., Verschueren, E., Cheung, T.K., Kirkpatrick, D.S., and Bingol, B. (2020). Dynamic regulation of mitochondrial import by the ubiquitin system. Mol. Cell 77: 1107–1123 e10, https://doi.org/10.1016/j.molcel.2020.02.012.

    • Crossref
    • PubMed
    • Export Citation
  • Pickles, S., Vigie, P., and Youle, R.J. (2018). Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr. Biol 28: R170–R185, https://doi.org/10.1016/j.cub.2018.01.004.

    • Crossref
    • PubMed
    • Export Citation
  • Princely Abudu, Y., Pankiv, S., Mathai, B.J., Hakon Lystad, A., Bindesboll, C., Brenne, H.B., Yoke Wui Ng, M., Thiede, B., Yamamoto, A., Mutugi Nthiga, T., et al. (2019). NIPSNAP1 and NIPSNAP2 act as “eat me” signals for mitophagy. Dev. Cell 49: 509–525 e12, https://doi.org/10.1016/j.devcel.2019.03.013.

    • Crossref
    • PubMed
    • Export Citation
  • Rambold, A.S., Kostelecky, B., Elia, N., and Lippincott-Schwartz, J. (2011). Tubular network formation protects mitochondria from autophagosomal degradation during nutrient starvation. Proc. Natl. Acad. Sci. U.S.A. 108: 10190–10195, https://doi.org/10.1073/pnas.1107402108.

    • Crossref
    • PubMed
    • Export Citation
  • Rodger, C.E., McWilliams, T.G., and Ganley, I.G. (2018). Mammalian mitophagy - from in vitro molecules to in vivo models. FEBS J 285: 1185–1202, https://doi.org/10.1111/febs.14336.

    • Crossref
    • PubMed
    • Export Citation
  • Rugarli, E.I. and Langer, T. (2012). Mitochondrial quality control: a matter of life and death for neurons. EMBO J 31: 1336–1349, https://doi.org/10.1038/emboj.2012.38.

    • Crossref
    • PubMed
    • Export Citation
  • Sauve, V., Lilov, A., Seirafi, M., Vranas, M., Rasool, S., Kozlov, G., Sprules, T., Wang, J., and Trempe, J.F., Gehring, K (2015). A Ubl/ubiquitin switch in the activation of Parkin. EMBO J 34: 2492–2505, https://doi.org/10.15252/embj.201592237.

    • Crossref
    • PubMed
    • Export Citation
  • Scarffe, L.A., Stevens, D.A., Dawson, V.L., and Dawson, T.M. (2014). Parkin and PINK1: much more than mitophagy. Trends Neurosci 37: 315–324, https://doi.org/10.1016/j.tins.2014.03.004.

    • Crossref
    • PubMed
    • Export Citation
  • Schiavi, A., Maglioni, S., Palikaras, K., Shaik, A., Strappazzon, F., Brinkmann, V., Torgovnick, A., Castelein, N., De Henau, S., Braeckman, B.P., et al. (2015). Iron-starvation-induced mitophagy mediates lifespan extension upon mitochondrial stress in C. elegans. Curr. Biol 25: 1810–1822, https://doi.org/10.1016/j.cub.2015.05.059.

    • Crossref
    • Export Citation
  • Scott, S.V., and Klionsky, D.J. (1998). Delivery of proteins and organelles to the vacuole from the cytoplasm. Curr. Opin. Cell Biol 10: 523–529, https://doi.org/10.1016/s0955-0674(98)80068-9.

    • Crossref
    • PubMed
    • Export Citation
  • Sekine, S., Wang, C., Sideris, D.P., Bunker, E., Zhang, Z., and Youle, R.J. (2019). Reciprocal roles of Tom7 and OMA1 during mitochondrial import and activation of PINK1. Mol. Cell 73: 1028–1043 e5, https://doi.org/10.1016/j.molcel.2019.01.002.

    • Crossref
    • PubMed
    • Export Citation
  • Sekine, S., and Youle, R.J. (2018). PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol. BMC Biol 16: 2, https://doi.org/10.1186/s12915-017-0470-7.

    • Crossref
    • PubMed
    • Export Citation
  • Shi, G., Lee, J.R., Grimes, D.A., Racacho, L., Ye, D., Yang, H., Ross, O.A., Farrer, M., McQuibban, G.A., and Bulman, D.E. (2011). Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson's disease. Hum. Mol. Genet 20: 1966–1974, https://doi.org/10.1093/hmg/ddr077.

    • Crossref
    • PubMed
    • Export Citation
  • Shiba-Fukushima, K., Imai, Y., Yoshida, S., Ishihama, Y., Kanao, T., Sato, S., and Hattori, N. (2012). PINK1-mediated phosphorylation of the Parkin ubiquitin-like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci. Rep 2: 1002, https://doi.org/10.1038/srep01002.

    • Crossref
    • PubMed
    • Export Citation
  • Sliter, D.A., Martinez, J., Hao, L., Chen, X., Sun, N., Fischer, T.D., Burman, J.L., Li, Y., Zhang, Z., Narendra, D.P., et al. (2018). Parkin and PINK1 mitigate STING-induced inflammation. Nature 561: 258–262, https://doi.org/10.1038/s41586-018-0448-9.

    • Crossref
    • PubMed
    • Export Citation
  • Stolz, A, Ernst, A, Dikic, I (2014). Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol 16: 495–501, https://doi.org/10.1038/ncb2979.

    • Crossref
    • PubMed
    • Export Citation
  • Sugiura, A., McLelland, G.L., Fon, E.A., and McBride, H.M. (2014). A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J 33: 2142–2156, https://doi.org/10.15252/embj.201488104.

    • Crossref
    • PubMed
    • Export Citation
  • Sun, N., Yun, J., Liu, J., Malide, D., Liu, C., Rovira, I.I., Holmstrom, K.M., Fergusson, M.M., Yoo, Y.H., Combs, C.A., et al. (2015). Measuring in vivo mitophagy. Mol. Cell 60: 685–696, https://doi.org/10.1016/j.molcel.2015.10.009.

    • Crossref
    • PubMed
    • Export Citation
  • Tanaka, A., Cleland, M.M., Xu, S., Narendra, D.P., Suen, D.F., Karbowski, M., and Youle, R.J. (2010). Proteasome and p97 mediate mitophagy and degradation of mitofusins induced by Parkin. J. Cell Biol 191: 1367–1380, https://doi.org/10.1083/jcb.201007013.

    • Crossref
    • PubMed
    • Export Citation
  • Thomas, R.E., Andrews, L.A., Burman, J.L., Lin, W.Y., and Pallanck, L.J. (2014). PINK1-Parkin pathway activity is regulated by degradation of PINK1 in the mitochondrial matrix. PLoS Genet 10: e1004279, https://doi.org/10.1371/journal.pgen.1004279.

    • PubMed
    • Export Citation
  • Tiku, V., Tan, M.W., and Dikic, I. (2020). Mitochondrial functions in infection and immunity. Trends Cell Biol 30: 263–275, https://doi.org/10.1016/j.tcb.2020.01.006.

    • Crossref
    • PubMed
    • Export Citation
  • Tondera, D., Grandemange, S., Jourdain, A., Karbowski, M., Mattenberger, Y., Herzig, S., Da Cruz, S., Clerc, P., Raschke, I., and Merkwirth, C., et al. (2009). SLP-2 is required for stress-induced mitochondrial hyperfusion. EMBO J 28: 1589–1600, https://doi.org/10.1038/emboj.2009.89.

    • Crossref
    • PubMed
    • Export Citation
  • Villa, E., Marchetti, S., and Ricci, J.E. (2018). No Parkin zone: mitophagy without Parkin. Trends Cell Biol 28: 882–895, https://doi.org/10.1016/j.tcb.2018.07.004.

    • Crossref
    • PubMed
    • Export Citation
  • Vives-Bauza, C., and Przedborski, S. (2010). PINK1 points Parkin to mitochondria. Autophagy 6: 674–675. https://doi.org/10.4161/auto.6.5.12068.

    • Crossref
    • PubMed
    • Export Citation
  • Voigt, A., Berlemann, L.A. and Winklhofer, K.F. (2016). The mitochondrial kinase PINK1: functions beyond mitophagy. J. Neurochem 139 (Suppl. 1): 232–239, https://doi.org/10.1111/jnc.13655.

    • Crossref
    • PubMed
    • Export Citation
  • Wauer, T., Simicek, M., Schubert, A., and Komander, D. (2015a). Mechanism of phospho-ubiquitin-induced PARKIN activation. Nature 524: 370–374, https://doi.org/10.1038/nature14879.

    • Crossref
    • Export Citation
  • Wauer, T., Swatek, K.N., Wagstaff, J.L., Gladkova, C., Pruneda, J.N., Michel, M.A., Gersch, M., Johnson, C.M., Freund, S.M., and Komander, D. (2015b). Ubiquitin Ser65 phosphorylation affects ubiquitin structure, chain assembly and hydrolysis. EMBO J 34: 307–325, https://doi.org/10.15252/embj.201489847.

    • Crossref
    • Export Citation
  • Wei, Y., Chiang, W.C., Sumpter, R.Jr., Mishra, P., and Levine, B. (2017). Prohibitin 2 is an inner mitochondrial membrane mitophagy receptor. Cell 168: 224–238 e10, https://doi.org/10.1016/j.cell.2016.11.042.

    • Crossref
    • PubMed
    • Export Citation
  • West, A.P., and Shadel, G.S. (2017). Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol 17: 363–375, https://doi.org/10.1038/nri.2017.21.

    • Crossref
    • PubMed
    • Export Citation
  • Whitworth, A.J., Lee, J.R., Ho, V.M., Flick, R., Chowdhury, R., and McQuibban, G.A. (2008). Rhomboid-7 and HtrA2/Omi act in a common pathway with the Parkinson's disease factors Pink1 and Parkin. Dis. Models Mech 1: 168–174; discussion 173, https://doi.org/10.1242/dmm.000109.

    • Crossref
    • Export Citation
  • Whitworth, A.J. and Pallanck, L.J. (2017). PINK1/Parkin mitophagy and neurodegeneration-what do we really know in vivo? Curr. Opin. Genet. Dev 44: 47–53, https://doi.org/10.1016/j.gde.2017.01.016.

    • Crossref
    • PubMed
    • Export Citation
  • Wilson, R.J., Drake, J.C., Cui, D., Zhang, M., Perry, H.M., Kashatus, J.A., Kusminski, C.M., Scherer, P.E., Kashatus, D.F., Okusa, M.D., et al. (2019). Conditional MitoTimer reporter mice for assessment of mitochondrial structure, oxidative stress, and mitophagy. Mitochondrion 44: 20–26, https://doi.org/10.1016/j.mito.2017.12.008.

    • Crossref
    • PubMed
    • Export Citation
  • Winklhofer, K.F. (2014). Parkin and mitochondrial quality control: toward assembling the puzzle. Trends Cell Biol. 24: 332–341, https://doi.org/10.1016/j.tcb.2014.01.001.

    • Crossref
    • PubMed
    • Export Citation
  • Yamano, K., Queliconi, B.B., Koyano, F., Saeki, Y., Hirokawa, T., Tanaka, K., and Matsuda, N. (2015). Site-specific Interaction mapping of phosphorylated ubiquitin to uncover Parkin activation. J. Biol. Chem 290: 25199–25211. https://doi.org/10.1074/jbc.M115.671446.

    • Crossref
    • PubMed
    • Export Citation
  • Yoshii, S.R., Kishi, C., Ishihara, N., and Mizushima, N. (2011). Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J. Biol. Chem 286: 19630–19640, https://doi.org/10.1074/jbc.M110.209338.

    • Crossref
    • PubMed
    • Export Citation
  • Youle, R.J. (2019). Mitochondria-Striking a balance between host and endosymbiont. Science 365: eaaw9855, https://doi.org/10.1126/science.aaw9855.

    • PubMed
    • Export Citation
  • Zhang, H., Bosch-Marce, M., Shimoda, L.A., Tan, Y.S., Baek, J.H., Wesley, J.B., Gonzalez, F.J., and Semenza, G.L. (2008). Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem 283: 10892–10903, https://doi.org/10.1074/jbc.M800102200.

    • Crossref
    • PubMed
    • Export Citation
  • Zhang, W., Ren, H., Xu, C., Zhu, C., Wu, H., Liu, D., Wang, J., Liu, L., Li, W., Ma, Q., et al. (2016). Hypoxic mitophagy regulates mitochondrial quality and platelet activation and determines severity of I/R heart injury. eLife 5: e21407. https://doi.org/10.7554/eLife.21407.

    • PubMed
    • Export Citation
  • Zheng, Y., Zhang, X., Wu, X., Jiang, L., Ahsan, A., Ma, S., Xiao, Z., Han, F., Qin, Z.H., Hu, W., et al. (2019). Somatic autophagy of axonal mitochondria in ischemic neurons. J. Cell Biol 218: 1891–1907, https://doi.org/10.1083/jcb.201804101.

    • Crossref
    • PubMed
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Biological Chemistry keeps you up-to-date with the latest advances in the molecular life sciences. The journal publishes Research Articles, Short Communications, Reviews and Minireviews. Areas include: general biochemistry/pathobiochemistry, structural biology, molecular and cellular biology, genetics and epigenetics, virology, molecular medicine, plant molecular biology/biochemistry and novel experimental methodologies.

Search