Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter June 16, 2016

A broad host range food-grade cloning vector for lactic acid bacteria

  • Parichat Phumkhachorn and Pongsak Rattanachaikunsopon EMAIL logo
From the journal Biologia

Abstract

The genetic modification of lactic acid bacteria being used in medicine and food industries has been limited due to the scarcity of food-grade cloning vectors for the bacteria. The 4.46-kb food-grade cloning vector pUBU constructed in this study consisted of 3 major components from food-approved organisms, the theta-type replicon from pUCL287 of Tetragenococcus halophilus, the lactococcal cadmium resistance (Cdr) determinant from pND918 and the promoter of L-lactate dehydrogenase (ldhL) gene from Lactobacillus plantarum. The Cdr determinant was used as a dominant selectable marker and the ldhL promoter, a strong constitutive promoter, was used to drive the expression of inserted genes. The newly constructed vector was able to transform several genera of lactic acid bacteria and stable in the bacteria under non-selective pressure for at least 100 generations. In addition, it allowed inserted genes to express in lactic acid bacteria under the control of ldhL promoter. The host range of pUBU extended to Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Pediococcus and Tetragenococcus. These results suggest that pUBU is a potential food-grade cloning vector for genetic modification of a wide range of lactic acid bacteria.

References

Allison G.E. & Klaenhammer T.R. 1996. Functional analysis of the gene encoding immunity to lactacin F, lafI, and its use as a Lactobacillus-specific, food-grade genetic marker. Appl. Environ. Microbiol. 62: 4450-4460.10.1128/aem.62.12.4450-4460.1996Search in Google Scholar

Anderson D.G. & McKay L.L. 1983. Simple and rapid method for isolating large plasmid DNA from lactic streptococci. Appl. Environ. Microbiol. 46: 549-552.10.1128/aem.46.3.549-552.1983Search in Google Scholar

Benachour A., Frere J., Flahaut S., Novel G. & Auffray Y. 1997. Molecular analysis of the replication region of the theta-replicating plasmid pUCL287 from Tetragenococcus (Pediococcus) halophilus ATCC33315. Mol. Gen. Genet. 255:504-513.10.1007/s004380050523Search in Google Scholar

Benachour A., Frere J. & Novel G. 1995. pUCL287 plasmid from Tetragenococcus halophila (Pediococcus halophilus) ATCC 33315 represents a new theta-type replicon family of lactic acid bacteria. FEMS Microbiol. Lett. 128:167-175.10.1111/j.1574-6968.1995.tb07518.xSearch in Google Scholar

Birnboim H.C. & Doly J. 1979. A rapid alkaline lysis method procedure for screening recombinant plasmid DNA. Nucleic Acids Res. 7: 1513-1523.10.1093/nar/7.6.1513Search in Google Scholar

Bor Y.C., Moraes C., Lee S.P., Crosby W.L., Sinskey A.J. & Batt C.A. 1992. Cloning and sequencing the Lactobacillus brevis gene encoding xylose isomerase. Gene 114:127–132.10.1016/0378-1119(92)90718-5Search in Google Scholar

Brede D.A., Lothe S., Salehian Z., Faye T. & Nes I.F. 2007. Identification of the propionicin F bacteriocin immunity gene (pcfI) and development of a food-grade cloning system for Propionibacterium freudenreichii. Appl. Environ. Microbiol. 73: 7542-7547.10.1128/AEM.01023-07Search in Google Scholar PubMed PubMed Central

Bron P.A., Benchimol M.G., Lambert J., Palumbo E., Deghorain M., Delcour J., De Vos W.M., Kleerebezem M. & Hols P. 2002. Use of the alr gene as a food-grade selection marker in lactic acid bacteria. Appl. Environ. Microbiol. 68:5663-5670.10.1128/AEM.68.11.5663-5670.2002Search in Google Scholar PubMed PubMed Central

Bron P.A., Hoffer S.M., Van Swam I. I., De Vos W.M. & Kleere-bezem M. 2004. Selection and characterization of conditionally active promoters in Lactobacillus plantarum, using ala-nine racemase as a promoter probe. Appl. Environ. Microbiol. 70:310-317.10.1128/AEM.70.1.310-317.2004Search in Google Scholar PubMed PubMed Central

Carr F.J., Chill D. & Maida N. 2002. The lactic acid bacteria: a literature survey. Crit. Rev. Microbiol. 28:281-370.10.1080/1040-840291046759Search in Google Scholar PubMed

De Vos W.M. 1999. Safe and sustainable systems for food-grade fermentations by genetically modified lactic acid bacteria. Int. Dairy J. 9: 3-10.10.1016/S0958-6946(99)00038-2Search in Google Scholar

Endo G. & Silver S. 1995. CadC, the transcriptional regulatory protein of the cadmium resistance system of Staphylococcus aureus plasmid pI258. J. Bacteriol. 177:4437-4441.10.1128/jb.177.15.4437-4441.1995Search in Google Scholar

Froseth B.R. & McKay L.L. 1991. Development and application of pMF011 as a possible food-grade cloning vector. J. Dairy Sci. 74:1445-1453.10.3168/jds.S0022-0302(91)78302-1Search in Google Scholar

Fu X. & Xu J.G. 2000. Development of a chromosome-plasmid balanced lethal system for Lactobacillus acidophilus with thyA gene as selective marker. Microbiol. Immunol. 44:551– 556.10.1111/j.1348-0421.2000.tb02533.xSearch in Google Scholar

Geoffroy M.C., Guyard C., Quatannens B., Pavan S., Lange M. & Mercenier A. 2000. Use of green fluorescent protein to tag lactic acid bacterium strains under development as live vaccine vectors. Appl. Environ. Microbiol. 66:383-391.10.1128/AEM.66.1.383-391.2000Search in Google Scholar

Giraffa G., Chanishvili N., & Widyastuti Y. 2010. Importance of lactobacilli in food and feed biotechnology. Res. Microbiol. 161:480-487.10.1016/j.resmic.2010.03.001Search in Google Scholar

Green M.R. & Sambrook J. 2012. Molecular Cloning: A Laboratory Manual. 4th Edition. Cold Spring Harbor Laboratory Press, New York, 1890 pp.Search in Google Scholar

He S., Gong F., Guo Y. & Zhang D. 2012. Food-grade selection markers in lactic acid bacteria. TAF Prev. Med. Bull. 11:499-510.10.5455/pmb.1-1309507875Search in Google Scholar

Hughes B.F. & McKay L.L. 1992. Deriving phage-insensitive lactococci using a food-grade vector encoding phage and nisin resistance. J. Dairy Sci. 75:914-923.10.3168/jds.S0022-0302(92)77831-XSearch in Google Scholar

Liu C.Q., Charoechai P., Khunajakr N., Deng Y.M., Widodo & Dunn N.W. 2002. Genetic and transcriptional analysis of a novel plasmid-encoded copper resistance operon from Lacto-coccus lactis. Gene 297:241-247.10.1016/S0378-1119(02)00918-6Search in Google Scholar

Liu C.Q., Khunajakr N., Chia L.G., Deng Y.M., Charoenchai P. & Dunn N.W. 1997. Genetic analysis of regions involved in replication and cadmium resistance of the plasmid pND302 from Lactococcus lactis. Plasmid 38: 79–90.10.1006/plas.1997.1301Search in Google Scholar PubMed

Liu C.Q., Su P., Khunajakr N., Deng Y.M., Sumual S., Kim W.S., Tandianus J.E. & Dunn N.W. 2005. Development of food-grade cloning and expression vectors for Lactococcus lactis. J. Appl. Microbiol. 98:127-135.10.1111/j.1365-2672.2004.02441.xSearch in Google Scholar PubMed

Mayo B., van Sinderen D. & Ventura M. 2008. Genome analysis of food grade lactic acid-producing bacteria: from basics to applications. Curr. Genomics 9: 169–183.10.2174/138920208784340731Search in Google Scholar PubMed PubMed Central

Mercenier A., Muller-Alouf H. & Grangette C. 2000. Lactic acid bacteria as live vaccines. Curr. Iss. Mol. Biol. 2: 17–25.Search in Google Scholar

Nguyen T.T., Mathiesen G., Fredriksen L., Kittl R., Nguyen T.H., Eijsink V.G.H., Haltrich D. & Peterbauer C.K. 2011. A food-grade system for inducible gene expression in Lactobacillus plantarum using an alanine racemase-encoding selection marker. J. Agric. Food Chem. 59:5617-5624.10.1021/jf104755rSearch in Google Scholar PubMed

Nucifora G., ChuL., MisraT.K. & Silver S. 1989. Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc. Natl. Acad. Sci. USA 86:3544-3548.10.1073/pnas.86.10.3544Search in Google Scholar PubMed PubMed Central

Phumkhachorn P., Rattanachaikunsopon P. & Khunsook S. 2007. The use of gfp gene in monitoring bacteriocin-producing Lactobacillus plantarum N014, a potential starter culture in nham fermentation. J. Food Prot. 70:419–424.10.4315/0362-028X-70.2.419Search in Google Scholar PubMed

Phupaboon S., Pudpai N., Punyauppa-Path S., Phumkhachorn P. & Rattanachaikunsopon P. 2016. Isolation of lactic acid bacteria from fermented foods to be developed as DNA delivery vehicle. J. Sci. Technol. UBU 18:21-29.Search in Google Scholar

Rattanachaikunsopon P. & Phumkhachorn P. 2006. Isolation and preliminary characterization of a bacteriocin produced by Lactobacillus plantarum N0 14 isolated from nham, a traditional Thai fermented pork. J. Food Prot. 69:1937-1943.10.4315/0362-028X-69.8.1937Search in Google Scholar PubMed

Rattanachaikunsopon P. & Phumkhachorn P. 2008. Incidence of nisin Z production in Lactococcus lactis subsp. lactis TFF 221 isolated from Thai fermented foods. J. Food Prot. 71:2024-2026.10.4315/0362-028X-71.10.2024Search in Google Scholar

Rattanachaikunsopon P. & Phumkhachorn P. 2009. Glass bead-based transformation method for lactic acid bacteria. Sci-enceAsia 35: 234-241.10.2306/scienceasia1513-1874.2009.35.234Search in Google Scholar

Rattanachaikunsopon P. & Phumkhachorn P. 2012. Construction of a food-grade cloning vector for Lactobacillus plantarum and its utilization in a food model. J. Gen. Appl. Microbiol. 58:317-324.10.2323/jgam.58.317Search in Google Scholar PubMed

Rattanachaikunsopon P., Saito T. & Nitisinprasert S. 2003. Detection and partial characterization of bacteriocin produced by Leuconostoc isolated from Thai fermented food. J. Sci. Technol. Human. 1: 149-158.Search in Google Scholar

Saez-Lara M.J., Gomez-Llorente C., Plaza-Diaz J. & Gil A. 2015. The role of probiotic lactic acid bacteria and Bifidobacteria in the prevention and treatment of inflammatory bowel disease and other related diseases: a systematic review of randomized human clinical trials. BioMed Res. Int. 2015:1–15.10.1155/2015/505878Search in Google Scholar PubMed PubMed Central

Sasaki Y., Ito Y. & Sasaki T. 2004. ThyA as a selection marker in construction of food-grade host-vector and integration systems for Streptococcus thermophilus. Appl. Environ. Microbiol. 70:1858-1864.10.1128/AEM.70.3.1858-1864.2004Search in Google Scholar PubMed PubMed Central

Scott K.P., Mercer D.K., Richardson A.J., Melville C.M., Glover L.A. & Flint H. J. 2000. Chromosomal integration of the green fluorescent protein gene in lactic acid bacteria and the survival of marked strains in human gut simulations. FEMS Microbiol. Lett. 182:23-27.10.1111/j.1574-6968.2000.tb08867.xSearch in Google Scholar PubMed

Seegers J.F.M.L., Bron S., Franke C.M., Venema G. & Keiweit R. 1994. The majority of lactococcal plasmids carry a highly related replicon. Microbiology 140:1291-1300.10.1099/00221287-140-6-1291Search in Google Scholar PubMed

Trotter M., Mills S., Ross R.P., Fitzgerald G.F. & Coffey A. 2001. The use of cadmium resistance on the phage-resistance plasmid pNP40 facilitates selection for its horizontal transfer to industrial dairy starter lactococci. Lett. Appl. Microbiol. 33: 409-414.10.1046/j.1472-765X.2001.01022.xSearch in Google Scholar

von Wright A. & Raty K. 1993. The nucleotide sequence for the replication region of pVS40, a lactococcal food grade cloning vector. Lett. Appl. Microbiol. 17:25-28.10.1111/j.1472-765X.1993.tb01427.xSearch in Google Scholar PubMed

Widyastuti Y., Rohmatussolihat & Febrisiantosa A. 2014. The role of lactic acid bacteria in milk fermentation. Food Nutr. Sci. 5: 435-442.10.4236/fns.2014.54051Search in Google Scholar

Wong W.Y., Su P., Allison G.E., Liu C.Q. & Dunn N.W. 2003. A potential food-grade cloning vector for Streptococcus thermophilus that uses cadmium resistance as the selectable marker. Appl. Environ. Microbiol. 69:5767-5771.10.1128/AEM.69.10.5767-5771.2003Search in Google Scholar PubMed PubMed Central

Abbreviations
Cdr

lactococcal cadmium resistance

gfpuv

gene for a green fluorescence protein variant

GFPuv

a green fluorescence protein variant

GRAS

generally regarded as safe

ldhL

L-lactate dehydrogenase gene

MCS

multiple cloning site

MRS

deMan Rogosa Sharpe.

Received: 2016-3-1
Accepted: 2016-5-9
Published Online: 2016-6-16
Published in Print: 2016-5-1

© 2016 Institute of Molecular Biology, Slovak Academy of Sciences

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/biolog-2016-0064/html
Scroll to top button