Buyer Inspired Meta-Heuristic Optimization Algorithm

  • 1 Electronics and Communication Engineering, National Institute of Technology Silchar, , India
  • 2 Electronics and Communication Engineering, National Institute of Technology Silchar, , India
  • 3 Electronics and Communication Engineering, National Institute of Technology Silchar, , India

Abstract

Nature inspired swarm based meta-heuristic optimization technique is getting considerable attention and established to be very competitive with evolution based and physical based algorithms. This paper proposes a novel Buyer Inspired Meta-heuristic optimization Algorithm (BIMA) inspired form the social behaviour of human being in searching and bargaining for products. In BIMA, exploration and exploitation are achieved through shop to shop hoping and bargaining for products to be purchased based on cost, quality of the product, choice and distance to the shop. Comprehensive simulations are performed on 23 standard mathematical and CEC2017 benchmark functions and 3 engineering problems. An exhaustive comparative analysis with other algorithms is done by performing 30 independent runs and comparing the mean, standard deviation as well as by performing statistical test. The results showed significant improvement in terms of optimum value, convergence speed, and is also statistically more significant in comparison to most of the reported popular algorithms.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Dorigo M., Thomas S., Ant colony optimization, MIT Press eBooks, 2004

  • [2] Blum C., Li X., Swarm intelligence in optimization, In C. Blum, D.Merkle (Ed.), Swarm intelligence, Natural Computing Series, Springer, 2008, DOI: https://doi.org/10.1007/978-3-540-74089-6_2

  • [3] Kennedy J., Eberhart R., Particle swarm optimization, Proceedings of ICNN’95 - International Conference on Neural Networks, Perth, WA, 1995, 4, 1942-1948, DOI: 10.1109/ICNN.1995.488968.

  • [4] Omran M., Engelbrecht A.P., Salman A., Particle swarm optimization methods for image clustering.” International Journal of Pattern Recognition and Artificial Intelligence, 2005, 19(3), 297-321. DOI: https://doi.org/10.1142/S0218001405004083

  • [5] Al Rashidi M.R., El-Hawary M.E., A survey of particle swarm optimization applications in electric power systems, IEEE Transactions on Evolutionary Computation, 2008, 13(4), 913–918. DOI: 10.1109/TEVC.2006.880326

  • [6] He S., Prempain E., Wu Q.H., An improved particle swarm optimizer for mechanical design optimization problems, Engineering Optimization, 2007, 36(5), 585-605. DOI: 10.1080/03052150410001704854

  • [7] Nimtawat A., Nanakorn P., Simple Particle Swarm Optimization for Solving Beam-Slab Layout Design Problems, Procedia Engineering, 2011, 14, 1392-1398, DOI: https://doi.org/10.1016/j.proeng.2011.07.175

  • [8] Dorigo M., 2007, Ant colony optimization, Scholarpedia, 2(3), 1461. DOI:10.4249/scholarpedia.1461

  • [9] Akay B., Karaboga D., Artificial bee colonial algorithm for large-scale problems and engineering design optimization, Journal of Intelligent Manufacturing, 2012, 23(4), 1001–1014, DOI: https://doi.org/10.1007/s10845-010-0393-4

  • [10] Yang X.S., A new metaheuristic bat-inspired algorithm, In González J.R., Pelta D.A., Cruz C., Terrazas G., rasnogor N. (Ed.), Nature inspired cooperative strategies for optimization (NICSO 2010), Studies in Computational Intelligence, Springer, 2010, DOI: https://doi.org/10.1007/978-3-642-12538-6_6

  • [11] Yang X.S., Firefly algorithms for multimodal optimization.” In Watanabe O., Zeugmann T. (Ed.), Stochastic algorithms: Foundations and applications: 5th international symposium, SAGA 2009, Springer, 2009, DOI: https://doi.org/10.1007/978-3-642-04944-6_14

  • [12] Mirjalili S., Lewis A., The whale optimization algorithm, Advances in Engineering Software, 2016, 95, 51–67. DOI: https://doi.org/10.1016/j.advengsoft.2016.01.008

  • [13] Mirjalili S., Mirjalili S.M., Lewis A., Grey wolf optimizer, Advances in Engineering Software, 2014, 69, 46–61. DOI: https://doi.org/10.1016/j.advengsoft.2013.12.007

  • [14] Sharma A., Sharma A., Panigrahi B.K., Kiran D., Kumar R., Ageist spider monkey optimization algorithm, Swarm and Evolutionary Computation, 2016, 28, 58–77. DOI: https://doi.org/10.1016/j.swevo.2016.01.002

  • [15] Wang G.G., Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems, Memetic Computing, 2016, 10(2), 151–164. DOI: https://doi.org/10.1007/s12293-016-0212-3

  • [16] Mirjalili S., Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm, Knowledge based systems, 2015, 89, 228-249. DOI: https://doi.org/10.1016/j.knosys.2015.07.006

  • [17] Mirjalili S., The ant lion optimizer, Advances in Engineering Software, 2015, 83, 80-98, DOI: https://doi.org/10.1016/j.advengsoft.2015.01.010

  • [18] Mirjalili S., Gandomi A.H., Mirjalili S.Z., Saremi S., Faris H., Mirjalili S.M., Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems, Advances in engineering software, 2017, 114, 163-191. DOI:10.1016/j.advengsoft.2017.07.002

  • [19] Mirjalili S., Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective discrete, and multi-objective problems, Neural Computing and Applications, 2016, 27(4), 1053–1073. DOI: https://doi.org/10.1007/s00521-015-1920-1

  • [20] Thangaraj R., Pant M., Abraham A., Bouvry P., Particle swarm optimization: Hybridization perspectives and experimental illustrations, Applied Mathematics and Computation, 2011, 217(12), 5208–5226. DOI: https://doi.org/10.1016/j.amc.2010.12.053

  • [21] Xuewen X., Xing Y., Wei B., Zhang Y., Li X., Deng X., Gui L., A fitness-based multi-role particle swarm optimization, Swarm and Evolutionary Computation, 2019, 44, 349-364, DOI: https://doi.org/10.1016/j.swevo.2018.04.006

  • [22] Tian D., Shi Z., MPSO: Modified particle swarm optimization and its applications, Swarm and Evolutionary Computation, 2018, 41, 49-68. DOI: https://doi.org/10.1016/j.swevo.2018.01.011

  • [23] Nobile M.S., Cazzaniga P., Besozzi D., Colombo R., Mauri G., Pasi G., Fuzzy Self-Tuning PSO: A settings-free algorithm for global optimization, Swarm and Evolutionary Computation, 2018, 39, 70-85. DOI: https://doi.org/10.1016/j.swevo.2017.09.001

  • [24] Chen W.N., Lin Y., Chen N., Zhan Z. H., Chung H.S.H., Li Y., Shi Y.H., Particle Swarm Optimization With an Aging Leader and Challengers, IEEE Transactions on Evolutionary Computation, 2013, 17(2), 241-258, DOI: 10.1109/TEVC.2011.2173577

  • [25] Nickabadi A., Ebadzadeh M.M., Safabakhsh R., A novel particle swarm optimization algorithm with adaptive inertia weight, Applied Soft Computing, 2011, 11(4), 3658–3670. DOI: https://doi.org/10.1016/j.asoc.2011.01.037

  • [26] Li Z., Wang W., Yan Y., Li Z., PS-ABC: A hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems, Expert Systems with Applications, 2015, 42(22), 8881–8895. DOI: https://doi.org/10.1016/j.eswa.2015.07.043

  • [27] Storn R., Price K., Differential Evolution – A simple and eflcient heuristic for global optimization over continuous spaces, Journal of Global Optimization, 1997, 11, 341–359. DOI: https://doi.org/10.1023/A:1008202821328

  • [28] Wang Z., Zhan Z., Lin Y., Yu W., Yuan H., Gu T., Kwong S., Dual-Strategy differential evolution with aflnity propagation clustering for multimodal optimization problems, IEEE Transactions on Evolutionary Computation, 2018, 22(6): 894-908. DOI: 10.1109/TEVC.2017.2769108

  • [29] Cui L., Li G., Luo Y., Chen F., Ming Z., Lu N., Lu J., An enhanced artificial bee colony algorithm with dual-population framework, Swarm and Evolutionary Computation, 2018, 43, 184-206, DOI: https://doi.org/10.1016/j.swevo.2018.05.002

  • [30] Xiang W., Meng X., Li Y., He R., An M., An improved artificial bee colony algorithm based on the gravity model, Information Sciences, 2018, 429, 49-71. DOI: https://doi.org/10.1016/j.ins.2017.11.007

  • [31] Chen X., Tianfield H., Li K., Self-adaptive differential artificial bee colony algorithm for global optimization problems, Swarm and Evolutionary Computation, 2019, 45: 70-91, DOI: https://doi.org/10.1016/j.swevo.2019.01.003

  • [32] Singh A., Deep K., Artificial Bee Colony algorithm with improved search mechanism, Soft Computing, 2019, 23, 12437–12460. DOI: https://doi.org/10.1007/s00500-019-03785-y

  • [33] Beheshti Z., Shamsuddin S.M.H., A review of population-based meta-heuristic algorithm, International Journal of Advances in Soft Computing and its Applications, 2013, 5(1), 1–35.

  • [34] Cao Y., Zhang H., Li W., Zhou M., Zhang Y., Chaovalitwongse W.A., Comprehensive Learning Particle Swarm Optimization Algorithm with Local Search for Multimodal Functions, IEEE Transactions on Evolutionary Computation, 2019, 23(4), 718-731. DOI: 10.1109/TEVC.2018.2885075

  • [35] Liu X., Zhan Z., Gao Y., Zhang J., Kwong S., Zhang J., Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization, IEEE Transactions on Evolutionary Computation, 2019, 23(4), 587-602. DOI: 10.1109/TEVC.2018.2875430

  • [36] Gupta S., Deep K., A novel Random Walk Grey Wolf Optimizer, Swarm and Evolutionary Computation, 2019, 44: 101-112. DOI: https://doi.org/10.1016/j.swevo.2018.01.001

  • [37] Singh N., Son L.H., Chiclana F., Magnot J.P., A new fusion of salp swarm with sine cosine for optimization of non-linear functions, Engineering with Computers, 2020, 36, 185–212. DOI: https://doi.org/10.1007/s00366-018-00696-8

  • [38] Long W., Cai S., Jiao J., Tang M., An eflcient and robust grey wolf optimizer algorithm for large-scale numerical optimization, Soft Computing, 2020, 24, 997–1026, DOI: https://doi.org/10.1007/s00500-019-03939-y

  • [39] Yang X.S., Chapter 2- analysis of algorithms, In X.-S. Yang (Ed.), Nature-inspired optimization algorithms, Oxford: Elsevier, 2014.

  • [40] Sree Ranjini K.S, Murugan S., Memory based hybrid Dragonfly algorithm for numerical optimization problem, Expart System with Application, 2017, 83, 63-78, DOI: https://doi.org/10.1016/j.eswa.2017.04.033

  • [41] Liu H., Abraham A., Zhang W., A Fuzzy adaptive turbulent particle swarm optimization, International Journal of Innovative Computing and Applications, 2007, 1(1), 39-47, DOI: https://doi.org/10.1504/IJICA.2007.013400

  • [42] Yang X-S., Nature-inspired Metaheuristic Algorithms, 2nd edition. Luniver Press, 2010.

  • [43] Yao X., Liu Y., Lin G., Evolutionary programming made faster, IEEE Transactions on Evolutionary Computation. 1999, 3(2), 82-102, DOI: 10.1109/4235.771163

  • [44] Saremi S., Mirjalili S., Lewis A., Grasshopper Optimisation Algorithm: Theory and application, Advances in Engineering Software, 2017, 105, 30-47. DOI: https://doi.org/10.1016/j.advengsoft.2017.01.004

  • [45] Awad N.H., Ali M.Z., Suganthan P.N., Liang J.J., Qu B.Y., Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization, Technical Report, Nanyang Technological University, Singapore, 2016.

  • [46] Tanabe R., Fukunaga A.S., Improving the search performance of SHADE using linear population size reduction, 2014 IEEE congress on evolutionary computation (CEC), 2014, 1658-1665. DOI: 10.1109/CEC.2014.6900380

  • [47] Mohamed A.W., Hadi A.A., Fattouh A.M., Jambi K.M., LSHADE with semi-parameter adaptation hybrid with CMA-ES for solving CEC 2017 benchmark problems, 2017 IEEE Congress on Evolutionary Computation (CEC), San Sebastian, 2017, 145-152. DOI:10.1109/CEC.2017.7969307

  • [48] Awad N.H., Ali M.Z., Suganthan P.N., Ensemble sinusoidal differential covariance matrix adaptation with euclidean neighborhood for solving CEC2017 benchmark problems, 2017 IEEE Congress on Evolutionary Computation (CEC), San Sebastian, 2017, 372-379. DOI: 10.1109/CEC.2017.7969336.

  • [49] Hansen N., Müller S.D., Koumoutsakos P., Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES), Evolutionary Computation, 2003, 11(1), 1-18. DOI: https://doi.org/10.1162/106365603321828970

  • [50] Demsar J., Statistical comparisons of classifiers over multiple data sets, Journal of Machine Learning Research, 2006, 7, 1–30.

  • [51] Derrac J., Garcia S., Molina D., Herrera F., A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms, Swarm and Evolutionary Computation, 2011, 1(1), 3–18, DOI: https://doi.org/10.1016/j.swevo.2011.02.002

  • [52] Deb K., Optimization for engineering design: algorithm and example, prentice-Hall of India, 1998.

  • [53] Fan Q., Yan X., Self-adaptive differential evolution algorithm with discrete mutation control parameters, Expert Systems with Applications, 2015, 42(3), DOI: https://doi.org/10.1016/j.eswa.2014.09.046

  • [54] Rao S.S., Chapter 8, Engineering Optimization – theory and practice, 4th edition, Wiley publication, 2009.

  • [55] Arora J., Arora J., Introduction to Optimum Design, McGraw-Hill, 2011.

  • [56] Mezura-Montes E., Coello C.A.C., Useful infeasible solutions in engineering optimization with evolutionary algorithms, In: Gelbukh A., de Albornoz Á., Terashima-Marín H. (Ed) MICAI 2005: Advances in Artificial Intelligence Lecture Notes in Computer Science, 3789, 2005, 652–662. DOI: http://dx.doi.org/10.1007/11579427_66

OPEN ACCESS

Journal + Issues

Open Computer Science is an open access, peer-reviewed journal. The journal publishes research results in the following fields: algorithms and complexity theory, artificial intelligence, bioinformatics, networking and security systems,
programming languages, system and software engineering, and theoretical foundations of computer science.

Search