Linking Web Resources in Web of Data to Encyclopedic Knowledge Base

Farzam Matinfar 1
  • 1 Department of Statistics, Mathematics, and Computer Science, Allameh Tabataba’i University, Iran, Tehran

Abstract

This paper introduces Wikipedia as an extensive knowledge base which provides additional information about a great number of web resources in the semantic web, and shows how RDF web resources in the web of data can be linked to this encyclopedia. Given an input web resource, the designed system identifies the topic of the web resource and links it to the corresponding Wikipedia article. To perform this task, we use the core labeling properties in web of data to specify the candidate Wikipedia articles for a web resource. Finally, a knowledge based approach is used to identify the most appropriate article in Wikipedia database. Evaluation of the system shows the high performance of the designed system.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Bizer, C., Heath, T., and Berners-Lee, T.: ‘The Story So Far’, International Journal on semantic Web and Information Systems, 2009, 5, (3), pp. 1-22

  • [3] Venkatesan, A., Ngompe, G.T., Hassouni, N.E., Chentli, I., Guignon, V., Jonquet, C., Ruiz, M., and Larmande, P.: ‘Agronomic Linked Data (AgroLD): a Knowledge-based System to Enable Integrative Biology in Agronomy’, PLOS ONE’, 2018, 13, (11)

  • [4] Knoblock, C.A., Szekely, P., Fink, E., Degler, D., Newbury, D., Sanderson, R., Blanch, K., Snyder, S., Chheda, N., Jain, N., Krishna, R.R., Sreekanth, N.B., and Yao, Y.: ‘Lessons Learned in Building Linked Data for the American Art Collaborative’, in Editor (Ed.)^(Eds.): ‘Book Lessons Learned in Building Linked Data for the American Art Collaborative’ (2017, edn.), pp. 263-279

  • [5] Bechhofer, S., Buchan, I., Roure, D.D., Missier, P., Ainsworth, J., Bhagat, J., Couch, P., Cruickshank, D., Delderfield, M., Dunlop, I., Gamble, M., Michaelides, D., Owen, S., Newman, D., Sufi, S., and Goble, C.: ‘Why linked data is not enough for scientists, Future Generation Computer Systems’, Future Generation Computer Systems, 2013, 29, (2), pp. 599-611

  • [6] Tummarello, G., Delbru, R., and Oren, E.: ‘Sindice.com: weaving the open linked data’, in Editor (Ed.)^(Eds.): ‘Book Sindice.com: weaving the open linked data’ (2007, edn.), pp. 552-565

  • [7] Klimek, J., Skoda, P., and Necasky, M.: ‘Survey of Tools for Linked Data Consumption’, Semantic Web journal, 2019, 10, (4), pp. 665-720

  • [9] Matinfar, F., Nematbakhsh, M.A., and Lausen, G.: ‘Discovery of RDFS: SeeAlso Patterns in Semantic Web’, International Journal of Pattern Recognition and Artificial Intelligence, 2014, 28, (2)

  • [10] Bunescu, R., and Pasca, M.: ‘Using Encyclopedic Knowledge for Named entity Disambiguation’, in Editor (Ed.)^(Eds.): ‘Book Using Encyclopedic Knowledge for Named entity Disambiguation’ (2006, edn.), pp. 9-16

  • [11] Nguyen, H., and Cao, T.H.: ‘Named entity disambiguation on an ontology enriched by Wikipedia’, in Editor (Ed.)^(Eds.): ‘Book Named entity disambiguation on an ontology enriched by Wikipedia’ (2008, edn.), pp. 247 – 254

  • [12] Klang, M., and Nugues, P.: ‘Linking, Searching, and Visualizing Entities inWikipedia’, in Editor (Ed.)^(Eds.): ‘Book Linking, Searching, and Visualizing Entities inWikipedia’ (2018, edn.), pp. 3426 - 3432

  • [13] Mehler, A., Baumartz, D., Henlein, A., and Hemati, W.: ‘fast-Sense: An EfficientWord Sense Disambiguation Classifier’, in Editor (Ed.)^(Eds.): ‘Book fastSense: An EfficientWord Sense Disambiguation Classifier’ (2018, edn.), pp.

  • [14] Kazama, J.i., and Torisawa, K.: ‘Exploiting Wikipedia as External Knowledge for Named Entity Recognition’. Proc. Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, {Prague, Czech Republic2007 pp. Pages

  • [15] Moro, A., Raganato, A., and Navigli, R.: ‘Entity Linking meetsWord Sense Disambiguation: a Unified Approach’, Transactions of the Association for Computational Linguistics, 2014, 2, (1), pp. 231-244

  • [16] Aggarwal, N., and Buitelaar, P.: ‘Wikipedia-Based Distributional Semantics for Entity Relatedness’, in Editor (Ed.)^(Eds.): ‘Book Wikipedia-Based Distributional Semantics for Entity Relatedness’ (2014, edn.), pp.

  • [17] Syed, Z., Finin, T., and Joshi, A.: ‘Wikipedia as an Ontology for Describing Documents’, in Editor (Ed.)^(Eds.): ‘Book Wikipedia as an Ontology for Describing Documents’ (2008, edn.), pp.

  • [18] Schonhofen, P.: ‘Identifying document topics using the Wikipedia category network’, Journal of Web Intelligence and Agent Systems, 2009, 7, (2), pp. 195-207

  • [19] Medelyan, O., Milne, D.N., Legg, C., and Witten, I.H.: ‘Mining meaning from Wikipedia’, International Journal of Human-Computer Studies, 2009, 67, (9), pp. 716-758

  • [20] McCrae, J.: ‘MappingWordNet Instances to Wikipedia’, in Editor (Ed.)^(Eds.): ‘Book MappingWordNet Instances to Wikipedia’ (2018, edn.), pp.

  • [21] AbdulgabbarSaif, Omar, N., Zainodin, U.Z., and Aziz, M.J.A.: ‘Building Sense Tagged Corpus Using Wikipedia for Supervised Word Sense Disambiguation’, Procedia Computer Science, 2018, 123, pp. 403-412

  • [22] Galárraga, L., Symeonidou, D., and Moissinac, J.-C.: ‘Rule Mining for Semantifying Wikilinks’. Proc. Linked Data on the Web (LDOW2015), Florence, Italy2015 pp. Pages

  • [23] Roberto Navigli, P.V.: ‘Structural semantic interconnections a knowledge-based approach to word sense disambiguation’, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2005, 27, (7), pp. 1075 - 1086

  • [24] Lesk, M.: ‘Automatic sense disambiguation using machine readable dictionaries: How to tell a pine cone from an ice cream cone’, in Editor (Ed.)^(Eds.): ‘Book Automatic sense disambiguation using machine readable dictionaries: How to tell a pine cone from an ice cream cone’ (1986, edn.), pp. 24-26

  • [25] Araujo, S., Houben, G.-J., and Schwabe, D.: ‘Linkator: Enriching Web Pages by Automatically Adding Dereferenceable Semantic Annotations’. Proc. International Conference on Web Engineering2010 pp. Pages

  • [26] Agrawal, R., Gollapudi, S., Kannan, A., and Kenthapadi, K.: ‘Identifying enrichment candidates in textbooks’, in Editor (Ed.)^(Eds.): ‘Book Identifying enrichment candidates in textbooks’ (2011, edn.), pp. 483-492

  • [27] Klímek, J., Škoda, P., and Něcaský, M.: ‘Survey of tools for Linked Data consumption’, Semantic Web, 2018, pp. 1-57

  • [28] Nentwig, M., Hartung, M., Ngomo, A.-C.N., and Rahm, E.: ‘A survey of current Link Discovery frameworks’, Semantic Web, 2017, 8, (3), pp. 419-436

  • [29] Ngomo, A.-C.N., and Auer, S.: ‘LIMES - A Time-Efficient Approach for Large-Scale Link Discovery on the Web of Data’, in Editor (Ed.)^(Eds.): ‘Book LIMES - A Time-Efficient Approach for Large-Scale Link Discovery on the Web of Data’ (2011, edn.), pp.

  • [30] Achichi, M., Bellahsene, Z., Ellefi, M.B., and Todorov, K.: ‘Linking and disambiguating entities across heterogeneous RDF graphs’, Journal of Web Semantics, 2019, 55, pp. 108-121

  • [31] Volz, J., Bizer, C., Berlin, F.U., Gaedke, M., and Kobilarov, G.: ‘Silk – A Link Discovery Framework for the Web of Data’, in Editor (Ed.)^(Eds.): ‘Book Silk – A Link Discovery Framework for the Web of Data’ (2009, edn.), pp.

  • [32] Scharffe, F., Liu, Y., and Zhou, C.: ‘RDF-AI: an Architecture for RDF Datasets Matching, Fusion and Interlink’, in Editor (Ed.)^(Eds.): ‘Book RDF-AI: an Architecture for RDF Datasets Matching, Fusion and Interlink’ (2009, edn.), pp.

  • [33] Nikolov, A., Uren, V., Motta, E., and Roeck, A.d.: ‘Integration of semantically annotated data by the KnoFuss architecture’, in Editor (Ed.)^(Eds.): ‘Book Integration of semantically annotated data by the KnoFuss architecture’ (2008, edn.), pp.

  • [34] Hassanzadeh, O., and Consens, M.P.: ‘Linked Movie Database’, in Editor (Ed.)^(Eds.): ‘Book Linked Movie Database’ (2009, edn.), pp.

  • [35] Raimond, Y., Sutton, C., and Sandler, M.: ‘Automatic Interlinking of Music Datasets on the Semantic Web’, in Editor (Ed.)^(Eds.): ‘Book Automatic Interlinking of Music Datasets on the Semantic Web’ (2008, edn.), pp.

  • [36] Olfa Ben Said, A.W., Adel M. Alimi: ‘ Interlinking video programs with Linked Open Data ’. Proc. 15th International Conference on Intelligent Systems Design and Applications (ISDA)2015 pp. Pages

  • [37] Hausenblas, M., Troncy, R., Raimond, Y., and Bürger, T.: ‘Interlinking Multimedia: How to Apply Linked Data Principles to Multimedia Fragments’, in Editor (Ed.)^(Eds.): ‘Book Interlinking Multimedia: How to Apply Linked Data Principles to Multimedia Fragments’ (2009, edn.), pp.

  • [38] Rajabi, E., and Greller, W.: ‘Exposing Social Data as Linked Data in Education’, International Journal on Semantic Web and Information Systems 2019, 15, (2), pp. 92-106

  • [39] Dezhao Song, Y.L., Jeff Heflin: ‘Linking Heterogeneous Data in the Semantic Web Using Scalable and Domain-Independent Candidate Selection’, IEEE Transactions on Knowledge and Data Engineering, 2016, (99)

  • [40] Hausenblas, M., Halb, W., and Raimond, Y.: ‘Scripting User Contributed Interlinking’, in Editor (Ed.)^(Eds.): ‘Book Scripting User Contributed Interlinking’ (2008, edn.), pp.

  • [41] James N. K. Liu, Y.-L.H., Edward H. Y. Lim, Xi-Zhao Wang: ‘A New Method for Knowledge and Information Management Domain Ontology Graph Model’, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2013, 43, (1), pp. 115 - 127

  • [42] Sun, H., Fan, W., Shen, W., and Xiao, T.: ‘Ontology Fusion in High-Level-Architecture-Based Collaborative Engineering Environments’, IEEE Transactions on Systems, Man, and Cybernetics, 2013, 43, (1), pp. 2 - 13

  • [43] Zhao, L., and Ichise, R.: ‘Ontology Integration for Linked Data’, Journal on Data Semantics, 2014, 3, (4), pp. 237–254

  • [44] Matinfar, F., Nematbakhsh, M., and Lausen, G.: ‘Web Resource Sense Disambiguation in Web of Data’, Journal of Universal Computer Science, 2013, 19, (13), pp. 1871-1891

  • [45] Bloehdorn, S., Hotho, A., and Staab, S.: ‘An Ontology-based framework for text mining’, GLDV Journal for computational linguistics and language technology, 2004, 20, (1), pp. 87-112

  • [46] Rajpathak, D.G., and Singh, S.: ‘An Ontology-Based Text Mining Method to Develop D-Matrix From Unstructured Text’, IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2014, 44, (7), pp. 966 - 977

  • [47] Lund, K., and Burgess, C.: ‘Producing high-dimensional semantic spaces from lexical co-occurrence’, Behavior Research Methods, Instruments, & Computers, 1996, 28, (2), pp. 203–208

  • [48] Ponzetto, S.P., and Navigli, R.: ‘Knowledge-rich Word Sense Disambiguation rivaling supervised systems’, in Editor (Ed.)^(Eds.): ‘Book Knowledge-rich Word Sense Disambiguation rivaling supervised systems’ (2010, edn.), pp. 1522-1531

  • [49] Fogarolli, A.: ‘Word Sense Disambiguation Based on Wikipedia Link Structure’. Proc. IEEE International Conference on Semantic Computing2009 pp. Pages

  • [50] Mihalcea, R.: ‘Using Wikipedia for Automatic Word Sense Disambiguation’, in Editor (Ed.)^(Eds.): ‘Book Using Wikipedia for Automatic Word Sense Disambiguation’ (2007, edn.), pp.

  • [51] Strube, M., and Ponzetto, S.P.: ‘WikiRelate! computing semantic relatedness using Wikipedia’, in Editor (Ed.)^(Eds.): ‘Book WikiRelate! computing semantic relatedness using Wikipedia’ (2006, edn.), pp. 1419-1424

  • [52] Csomai, A., and Mihalcea, R.: ‘Linking documents to encyclopedic knowledge’, IEEE Intelligent Systems, 2008, 23, (5), pp. 34-41

  • [53] David Tomýs, Y.G., Francisco Agullý: ‘Entity linking in media content and user comments: Connecting data to wikipedia and other knowledge bases’. Proc. eChallenges e-2015 Conference2015 pp. Pages

  • [54] Zesch, T., Müller, C., and Gurevych, I.: ‘Extracting Lexical Semantic Knowledge from Wikipedia and Wiktionary’, in Editor (Ed.)^(Eds.): ‘Book Extracting Lexical Semantic Knowledge from Wikipedia and Wiktionary’ (2008, edn.), pp. 1646–1652

OPEN ACCESS

Journal + Issues

Search