Taylor Series Based Numerical Integration Method

Petr Veigend 1 , Gabriela Nečasová 2 , and Václav Šátek 3
  • 1 Brno University of Technology, Faculty of Information Technology, Božetěchova 2, 612 66, Brno, Czech Republic
  • 2 Brno University of Technology, Faculty of Information Technology, Božetěchova 2, 612 66, Brno, Czech Republic
  • 3 Brno University of Technology, IT4Innovations, VŠB Technical University of Ostrava, , Faculty of Information Technology, Božetěchova 2, 612 66, Brno, Czech Republic

Abstract

This article deals with a high order integration method based on the Taylor series. The paper shows many positive properties of this method on a set of technical initial value problems. These problems can be transformed into the autonomous systems of ordinary differential equations for both linear and nonlinear problems. The MATLAB implementation of the method is compared with state-ofthe-art MATLAB solvers.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1] Kunovský J., Modern Taylor Series Method, Habilitation work, Faculty of Electrical Engineering and Computer Science, Brno University of Technology, 1994

  • [2] Veigend P., Nečasová G., Šátek V., High Order Numerical Integration Method and its Applications – The First 36 Years of MTSM, in 2019 IEEE 15th International Scientific Conference on Informatics, 2019, 288–293

  • [3] Veigend P., Nečasová G., Šátek V., Model of the telegraph line and its numerical solution, Open Computer Science, 8, in press, 2018, 1–8, https://doi.org/10.1515/comp-2018-0002

  • [4] Kocina F., Nečasová G., Veigend P., Šátek V., Kunovský J., Parallel Solution of Higher Order Differential Equations, in 14th International Conference on High Performance Computing & Simulation, Institute of Electrical and Electronics Engineers, 2016, ISBN 978-1-5090-2088-1

  • [5] Veigend P., Šátek V., Nečasová G., Model of the Telegraph line and its Numerical Solution, Open Computer Science, 8(1), 2018, 10–17, 10.1515/comp-2018-0002

  • [6] Hairer E., Nørsett S.P., Wanner G., Solving Ordinary Differential Equations I, vol. Nonstiff Problems. Springer-Verlag Berlin Heidelberg, 1987, ISBN 3-540-56670-8

  • [8] MATLAB and Simulink software, http://www.mathworks.com

  • [10] Šátek V., High Performance Computing Research Group, https://www.fit.vut.cz/research/group/hpc/.en

  • [11] Kocina F., Kunovský J., Nečasová G., Šátek V., Veigend P., Parallel solution of higher order differential equations, in Proceedings of the 2016 International Conference on High Performance Computing & Simulation (HPCS 2016), Institute of Electrical and Electronics Engineers, 2016, 302–309

  • [12] Barrio R., Rodríguez M., Abad A., Blesa F., TIDES: A free software based on the Taylor series method, Monografías de la Real Academia de Ciencias de Zaragoza, 35, 2011, 83–95

  • [13] Jorba A., Zou M., A software package for the numerical integration of ODE by means of high-order Taylor methods, in Exp. Math., volume 14, 2005, 99–117

  • [14] Chang Y.F., Corliss G., ATOMF: solving ODEsand DAEs using Taylor series, Computers Math. Applic., 28, 1994, 209–233

  • [15] Berz M., COSY INFINITY version 8 reference manual, Technical Report MSUCL–1088, National Superconducting Cyclotron Lab., Michigan State University, East Lansing, Mich., 1997

  • [16] Nedialkov N.S., Pryce J., Solving differential algebraic equations by Taylor series III. The DAETS code, JNAIAM J. Numer. Anal. Ind. Appl. Math., 3, 2008, 61–80

  • [17] Barrio R., Blesa F., Lara M., VSVO Formulation of the Taylor Method for the Numerical Solution of ODEs, in Computers and Mathematics with Applications, volume 50, 2005, 93–111

  • [18] Barrio R., Performance of the Taylor series method for ODEs/DAEs, in Applied Mathematics and Computation, volume 163, 2005, 525–545, ISSN 00963003

  • [19] Mohazzabi P., L. Becker J., Numerical Solution of Differential Equations by Direct Taylor Expansion, Journal of Applied Mathematics and Physics, 05(03), 2017, 623–630, 10.4236/jamp.2017.53053

  • [20] Baeza A., Boscarino S., Mulet P., Russo G., Zorío D., Approximate Taylor methods for ODEs, Computers & Fluids, 159, 2017, 156 – 166, https://doi.org/10.1016/j.compfluid.2017.10.001

  • [22] IT4I, SOLOMON Supercomputer, https://docs.it4i.cz/salomon/introduction/

  • [23] Richard P., Feynman L., Robert B., Sands M., Feynman Lectures on Physics: The New Millennium Edition, Basic Books, 2015

  • [24] Chaloupka J., Kocina F., Veigend P., Nečasová G., Šátek V., Kunovský J., Multiple Integral Computations, in 14th International Conference of Numerical Analysis and Applied Mathematics, 1863, American Institute of Physics, 2017, 1–4, 10.1063/1.4992650

  • [25] Butcher J.C., Numerical methods for ordinary differential equations, John Wiley & Sons, 2016

  • [26] Sehnalová P., Šátek V., 35 Years of Taylor-Kunovsky Simulation Language, in 16th International Conference of Numerical Analysis and Applied Mathematics, volume 2116, American Institute of Physics, 2019, 10.1063/1.5114335

  • [27] Söderlind G., Jay L., Calvo M., Stiffness 1952–2012: Sixty years in search of a definition, Bit Numer Math, 55, 2015, 531–558, 10.1007/s10543-014-0503-3

OPEN ACCESS

Journal + Issues

Search