Characterizing hydro-thermal compression behavior of aspen wood strands

Cheng Zhou 1 , Gregory D. Smith 1 ,  and Chunping Dai 2
  • 1 Department of Wood Science, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
  • 2 FPInnovations – Forintek Division, Vancouver, BC, Canada

Abstract

Wood-based composites, such as oriented strand board, are typically manufactured by consolidating mats of resinated wood elements under heat and pressure. During this process, the temperature and moisture content distributions within the mat greatly affect the properties of end products. To improve the fundamental understanding of mat consolidation during hot-pressing, a model is established to investigate the transverse compression behavior of aspen wood strands for a variety of combinations of temperatures (20–200°C) and moisture contents (0–15%). A regression approach is used to obtain the modulus-temperature-moisture relationship. In addition, elevated temperatures and moistures are found to influence the strain function of wood strands, which was previously assumed to be independent of these factors.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Holzforschung is an international scholarly journal that publishes cutting-edge research on the biology, chemistry, physics and technology of wood and wood components. High quality papers about biotechnology and tree genetics are also welcome. Rated year after year as one of the top scientific journals in the category of Pulp and Paper (ISI Journal Citation Index), Holzforschung represents innovative, high quality basic and applied research.

Search