Wood-based resins and other bio-based binders for the production of mineral wool

  • 1 Wood K Plus – Competence Center for Wood Composites and Wood Chemistry, Kompetenzzentrum Holz GmbH, Altenberger Straße 69, A-4040 Linz, Austria
  • 2 Institute for Chemistry of Renewable Resources, University of Natural Resources and Life Science Vienna, Konrad-Lorenz-Straße 24, A-3430 Tulln an der Donau, Austria
  • 3 Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Porthansgatan 3, 20500 Åbo/Turku, Finland
Arianna LuciaORCID iD: https://orcid.org/0000-0001-6151-3967
  • Wood K Plus – Competence Center for Wood Composites and Wood Chemistry, Kompetenzzentrum Holz GmbH, Altenberger Straße 69, A-4040 Linz, Austria
  • Institute for Chemistry of Renewable Resources, University of Natural Resources and Life Science Vienna, Konrad-Lorenz-Straße 24, A-3430 Tulln an der Donau, Austria
  • orcid.org/0000-0001-6151-3967
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Hendrikus W.G. van HerwijnenORCID iD: https://orcid.org/0000-0002-4349-2821 and Thomas RosenauORCID iD: https://orcid.org/0000-0002-6636-9260
  • Institute for Chemistry of Renewable Resources, University of Natural Resources and Life Science Vienna, Konrad-Lorenz-Straße 24, A-3430 Tulln an der Donau, Austria
  • Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Porthansgatan 3, 20500 Åbo/Turku, Finland
  • orcid.org/0000-0002-6636-9260
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

The traditional binder used in mineral wool is phenolic resin that makes mineral wool insulations reliable and efficient. The toxicity and health hazards of phenol and formaldehyde are becoming more and more pressing, and the industrial production needs to focus on safer precursors. Several formulations of bio-based binders for mineral wool have been developed, meeting the challenge of performing equally well as conventional binders. Technical lignins, due to their intrinsic structure and their abundance, are good candidates for future industrial adhesives. Carbohydrates are other class of biomaterials widely used in both research and patent formulations toward mineral wool binders. Proteins and cardanol are still largely unknown precursors, although they have hidden potentials for reliable binder systems. Even if conventional binders are not replaced completely with bio-based alternatives today, a partial use is already a step forward in the right direction – toward future biorefinery-based industries and knowledge-based bioeconomies in general.

  • Adler, E. (1977) Lignin chemistry-past, present and future. Wood Sci. Technol. 11:169–218.

    • Crossref
    • Export Citation
  • Allais, F., Ducrot, P.H., Broussard, O., Petit, M., Silioc, C. (2016) Sizing composition for mineral wool, comprising lignosulfonate and a carbonyl compound, and resulting insulating products. Saint Gobain Isover. WO2016120576 (A1).

  • Allais, F., Ducrot, P.H., Broussard, O., Petit, M., Silioc, C. (2018) Binder for mineral fibres, comprising lignosulfonate and a carbonyl compound, and resulting mats. Institut National de la Recherche Agronomique INRA, Saint-Gobain Adfors. US 0002225 (A1).

  • Appley, C., Hampson, C., Mueller, G. (2010) Mineral wool insulation. Knauf Insulation Limited. EP 2176183 A1.

  • Arkens, C.T., Chung, N.U.J. (1999) Formaldehyde-free compositions for nonwovens. Rohm & Haas. US5932689 (A).

  • Arkens, C.T., Egolf, S.L. (1999) Formaldehyde-free, accelerated cure, aqueous composition for bonding glass fiber heat-resistant nonwovens. Rohm and Haas Company. US005977232 (A).

  • Arkens, C.T., Gleim, R.D. (2001) Curable aqueous composition and use as fiberglass nonwoven binder. Rohm & Haas. US6221973 (B1).

  • Azadi, P., Inderwildi, O.R., Farnood, R., King, D.A. (2013) Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew. Sust. Energ. Rev. 21:506–523.

    • Crossref
    • Export Citation
  • Balgude, D., Sabnis, A.S. (2014) CNSL: an environment friendly alternative for the modern coating industry. J. Coat. Technol. Res. 11:169–183.

    • Crossref
    • Export Citation
  • Ball, F.J. (1962) Verfahren zum Herstellen von Matten aus mineralischen Fasern. West Virginia Pulp and Paper Company. DE1232054 (B).

  • Bandara, N., Akbari, A., Esparza, Y., Wu, J. (2018) Canola protein: a promising protein source for delivery, adhesive, and material applications. J. Am. Oil Chem. Soc. 95:1075–1090.

    • Crossref
    • Export Citation
  • Berlin, A., Balakshin, M. (2014) Chapter 18 – Industrial lignins: analysis, properties, and applications. In: Bioenergy Research: Advances and Applications. Eds. Gupta, V.K., Tuohy, M.G., Kubicek, C.P., Saddler, J. Elsevier, Amsterdam, The Netherlands. pp. 315–336.

  • Boerjan, W., Ralph, J., Baucher, M. (2003) Lignin biosynthesis. Annu. Rev. Plant Biol. 54:519–546.

    • Crossref
    • PubMed
    • Export Citation
  • Bozell, J.J., Petersen, G.R. (2010) Technology development for the production of biobased products from biorefinery carbohydrates–the US Department of Energy’s “Top 10” revisited. Green Chem. 12:539–554.

    • Crossref
    • Export Citation
  • Caillol, S. (2018) Cardanol: a promising building block for biobased polymers and additives. Curr. Opin. Green Sustain. Chem. 14:26–32.

    • Crossref
    • Export Citation
  • Canti, M. (2014) Binder for manufacturing of concrete or laminated products. Canti, M. EP2760802 (A1).

  • Cao, L., Yu, I.K.M., Liu, Y., Ruan, X., Tsang, D.C.W., Hunt, A.J., Ok, Y.S., Song, H., Zhang, S. (2018) Lignin valorization for the production of renewable chemicals: state-of-the-art review and future prospects. Bioresour. Technol. 269:465–475.

    • Crossref
    • PubMed
    • Export Citation
  • Castro-Cabado, M.M., Casado, D.A.L., Aznar, É.A.I., Pi, M.M., Molinero, A.A. (2016) Formaldehyde-free binder and use for mineral wool insulation products. Ursa Insulation SA. EP2867292 (B1).

  • Chandel, A.K., Garlapati, V.K., Singh, A.K., Antunes, F.A.F., da Silva, S.S. (2018) The path forward for lignocellulose biorefineries: bottlenecks, solutions, and perspective on commercialization. Bioresour. Technol. 264:370–381.

    • Crossref
    • PubMed
    • Export Citation
  • Crestini, C., Lange, H., Sette, M., Argyropoulos, D.S. (2017) On the structure of softwood kraft lignin. Green Chem. 19: 4104–4121.

    • Crossref
    • Export Citation
  • Das, T.K., Das, D., Guru, B.N., Das, K.N., Lenka, S. (1998) Polymers from renewable resources. XXVIII. Synthesis, characterization, and thermal studies of semi-interpenetrating polymer networks derived from castor-oil-based polyurethanes and cardanol derivatives. Polym. Plast. Technol. Eng. 37: 427–435.

    • Crossref
    • Export Citation
  • Dongre, P., Driscoll, M., Amidon, T., Bujanovic, B. (2015) Lignin-furfural based adhesives. Energies 8:7897–7914.

    • Crossref
    • Export Citation
  • Eseyin, A.E., Steele, P.H. (2015) An overview of the applications of furfural and its derivatives. Int. J. Adv. Chem. 3:6.

  • Esmaeili, N., Zohuriaan-Mehr, M.J., Mohajeri, S., Kabiri, K., Bouhendi, H. (2017) Hydroxymethyl furfural-modified urea–formaldehyde resin: synthesis and properties. Eur. J. Wood Wood Prod. 75:71–80.

    • Crossref
    • Export Citation
  • Fargo, H.E. (1977) Production of glass fiber products. Owens-Corning Fiberglas Corporation. US 4014726.

  • Foyer, G., Chanfi, B.-H., Virieux, D., David, G., Caillol, S. (2016a) Aromatic dialdehyde precursors from lignin derivatives for the synthesis of formaldehyde-free and high char yield phenolic resins. Eur. Polym. J. 77:65–74.

    • Crossref
    • Export Citation
  • Foyer, G., Chanfi, B.-H., Boutevin, B., Caillol, S., David, G. (2016b) New method for the synthesis of formaldehyde-free phenolic resins from lignin-based aldehyde precursors. Eur. Polym. J. 74:296–309.

    • Crossref
    • Export Citation
  • Ghorbani, M., Liebner, F., van Herwijnen, H.W.G., Pfungen, L., Krahofer, M., Budjav, E., Konnerth, J. (2016) Lignin phenol formaldehyde resoles: the impact of lignin type on adhesive properties. BioResources 11:6727–6741.

  • Ghorbani, M., Liebner, F., van Herwijnen, H.W.G., Solt, P., Konnerth, J. (2018) Ligneous resole adhesives for exterior-grade plywood. Eur. J. Wood Wood Prod. 76:251–258.

    • Crossref
    • Export Citation
  • Glasser, W.G., Glasser, H.R. (1974) Simulation of reactions with lignin by computer (simrel): II. A model for softwood lignin. Holzforschung 28:5–11.

  • Guo, M., Vayda, M.E., Gao, Z. (2012) Whey-protein based environmentally friendly wood adhesives and methods of producing and using the same. The University of Vermont and State Agricultural College. US20120183794 (A1).

  • Hansen, E., Nissen, P., Husemoen, T. (2006) Formaldehyde-free aqueous binder composition for mineral fibers. Rockwool International AS. US 20060111480 (A1).

  • Hawkins, C.M., Chen, L., Hernandez-Torres, J.M., Downey, W.E. (2011) Modified starch based binder. Owens Corning Intellectual Capital LLC. US20110021101 (A1).

  • Hawkins, C.M., Hernandez-Torres, J.M., Chen, L., Martine, E.A., Chacko, J. (2014) Insulative products having bio-based binders. Owens Corning Intellectual Capital, Llc. US 2014/0364029 (A1).

  • Hawkins, C.M., Hernandez-Torres, J.M., Chen, L. (2017) Bio-based binders for insulation and non-woven mats. Owens Corning Intellectual Capital LLC. US9546263 (B2).

  • IARC. (2002) IARC monographs on the evaluation of carcinogenic risks to humans, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France. 81.

  • IARC. (2004) IARC monographs on the evaluation of carcinogenic risks to humans, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France. 88.

  • IARC. (2009) IARC monographs on the evaluation of carcinogenic risks to humans, International Agency for Research on Cancer, 150 cours Albert Thomas, 69372 Lyon Cedex 08, France. 100F:401–435.

  • Jackson, R., Aindow, T., Baybutt, G. (2007) Formaldehyde-free mineral fibre insulation product. Knauf Insulation SPRL. EP2126179 (B1).

  • Jaffrennou, B., Obert, E., Kaplan, B. (2014) Bonding composition for mineral wool based on reducing saccharide and hydrogenated saccharide, and insulating products obtained. Saint-Gobain Isover. US 8623234 (B2).

  • Jelle, B.P. (2011) Traditional, state-of-the-art and future thermal building insulation materials and solutions – properties, requirements and possibilities. Energy Build. 43: 2549–2563.

    • Crossref
    • Export Citation
  • King, D., Inderwildi, O.R., Williams, A. The Future of Industrial Biorefineries. World Economic Forum, Geneva, Switzerland, 2010.

  • Kobayashi, S. (2017) Green polymer chemistry: new methods of polymer synthesis using renewable starting materials. Struct. Chem. 28:461–474.

    • Crossref
    • Export Citation
  • Lettner, M., Solt, P., Rößiger, B., Pufky-Heinrich, D., Jääskeläinen, A.-S., Schwarzbauer, P., Hesser, F. (2018) From wood to resin–identifying sustainability levers through hotspotting lignin valorisation pathways. Sustainability 10:2745.

    • Crossref
    • Export Citation
  • Lofton, E.P. (1995) Formaldehyde-free binder. Rohm and Haas Company. US5385756 (A).

  • Lörcks, J., Obradovic, P., Hochbahn, P., Feeser, H. (1988) Flame-resistant starch, process for its preparation and its use. Unilever Bestfoods North America. EP0129227 (B1).

  • Loureiro, T., Dip, R.M.M., Lucas, E., Spinelli, L. (2018) Cardanol polymerization under acid conditions by addition and condensation reactions. J. Polym. Environ. 26:555–566.

    • Crossref
    • Export Citation
  • Luo, J., Luo, J., Yuan, C., Zhang, W., Li, J., Gao, Q., Chen, H. (2015) An eco-friendly wood adhesive from soy protein and lignin: performance properties. RSC Adv. 5:100849–100855.

    • Crossref
    • Export Citation
  • Mahanwar, P.A., Kale, D.D. (1996) Effect of cashew nut shell liquid (CNSL) on properties of phenolic resins. J. Appl. Polym. Sci. 61:2107–2111.

    • Crossref
    • Export Citation
  • Miele, P., Fisler, D. (2007) Glass fiber composite and method of making glass fiber composites using a binder derived from renewable resources. Johns Manville. US20070036975 (A1).

  • Natarajan, M., Murugavel, S.C. (2013) Synthesis, spectral and thermal degradation kinetics of novolac resins derived from cardanol. High Perform. Polym. 25:685–696.

    • Crossref
    • Export Citation
  • Ng, F., Couture, G., Philippe, C., Boutevin, B., Caillol, S. (2017) Bio-based aromatic epoxy monomers for thermoset materials. Molecules 22:149.

    • Crossref
    • Export Citation
  • Noll, L.E., Farish, J.F. (1969) Dicyandiamide modified resin binders US. Westvaco Corporation. US 3463747 (A).

  • Öhman, F., Theliander, H., Tomani, P., Axegard, P. (2005) Method for separating lignin from black liquor. Valmet Oy. EP1794363 (B2).

  • Papadopoulou, E., Chrissafis, K. (2011) Thermal study of phenol–formaldehyde resin modified with cashew nut shell liquid. Thermochim. Acta 512:105–109.

    • Crossref
    • Export Citation
  • Patel, A., Hrůzová, K., Rova, U., Christakopoulos, P., Matsakas, L. (2019) Sustainable biorefinery concept for biofuel production through holistic volarization of food waste. Bioresour. Technol. 294:122247.

    • Crossref
    • PubMed
    • Export Citation
  • Pilato, L.A. Phenolic Resins: Chemistry, Applications and Performance. Springer, Berlin, Heidelberg, Germany, 2013.

  • Pinto, M., Xu, H., Natesh, A., Wei, J. (2016) Cnsl-based hydrocarbon resins, preparation and uses thereof. Cardolite Corp [US]. US2016075805 (A1).

  • Pisanova, E., Schmidt, R., Tseitlin, A. (2012) Poly(vinyl alcohol)–based formaldehyde-free curable aqueous composition. Dynea Oy. US8133952B2.

  • Qi, G., Li, N., Wang, D., Sun, X.S. (2016) Development of high-strength soy protein adhesives modified with sodium montmorillonite clay. J. Am. Oil Chem. Soc. 93:1509–1517.

    • Crossref
    • Export Citation
  • Qi, X., Zhou, R., Ai, H.-J., Wu, X.-F. (2020) HMF and furfural: promising platform molecules in rhodium-catalyzed carbonylation reactions for the synthesis of furfuryl esters and tertiary amides. J. Catal. 381:215–221.

    • Crossref
    • Export Citation
  • Rong, Y., Sillick, M., Gregson, C.M. (2009) Determination of dextrose equivalent value and number average molecular weight of maltodextrin by osmometry. J. Food Sci. 74:C33–C40.

    • Crossref
    • PubMed
    • Export Citation
  • Sarjeant, P.T. (1965) Improved lignin-extended phenolic resins. West Virginia Pulp and Paper Co. GB986711 (A).

  • Sarjeant, P.T. (1966) Lignin containing resin binder. West Virginia Pulp and Paper Co. US3285801.

  • Schneider, M.H., Phillips, J.G. (2004) Furfuryl alcohol and lignin adhesive composition. The University of New Brunswick. US6747076 (B2).

  • Shen, X. (2013) Preparation method of cardanol modified boron-containing phenolic resin-based glass fiber composite wiper for finishing mill. Taicang Lidalaite Prec Industry Co Ltd. CN102504476 (B).

  • Shibao, J., You, C., Shizheng, W. (2014) Lignin rock wool phenolic resin binder and its preparation method and use method. Hebei Jinyaun Building Materials Technology Co LTD. CN103911104 (A).

  • Shukla, S.K., Maithani, A., Srivastava, D. (2014) Studies on the effect of concentration of formaldehyde on the synthesis of resole-type epoxidized phenolic resin from renewable resource material. Des. Monomers Polym. 17:69–77.

    • Crossref
    • Export Citation
  • Sierra, D.H. (1993) Fibrin sealant adhesive systems: a review of their chemistry, material properties and clinical applications. J. Biomater. Appl. 7:309–352.

    • Crossref
    • PubMed
    • Export Citation
  • Singh, H., Varanasi, J.L., Banerjee, S., Das, D. (2019) Production of carbohydrate enrich microalgal biomass as a bioenergy feedstock. Energy. 188:116039.

    • Crossref
    • Export Citation
  • Swift, B., Xu, R., Kissell, R. (2016) Binders and materials made therewith. Knauf Insulation GmbH. EP 2 574 639 (A2).

  • Taylor, T.J., Bristol, D.C., Nedwick, P. (2001) Polycarboxy/polyol fiberglass binder of low pH. Johns Manville International, Inc., Rohm and Haas Company. US6331350 (B1).

  • Teong, S.P., Yi, G., Zhang, Y. (2014) Hydroxymethylfurfural production from bioresources: past, present and future. Green Chem. 16:2015–2026.

    • Crossref
    • Export Citation
  • Tian, H., Guo, G., Fu, X., Yao, Y., Yuan, L., Xiang, A. (2018) Fabrication, properties and applications of soy-protein-based materials: a review. Int. J. Biol. Macromol. 120:475–490.

    • Crossref
    • PubMed
    • Export Citation
  • Tseitlin, A., Van Alstyne, D., Bloembergen, S. (2017) A curable sheared or extruded, cross linked starch nanoparticle latex binder for use with mineral, natural organic or synthetic fibre products and non-woven mats. Ecosynthetix Ltd. EP2714794 (B1).

  • Turunen, M., Alvila, L., Pakkanen, T.T., Rainio, J. (2003) Modification of phenol–formaldehyde resol resins by lignin, starch, and urea. J. Appl. Polym. Sci. 88:582–588.

    • Crossref
    • Export Citation
  • Van Herwijnen, H.W.G., Heep, W. (2010) Resin for producing an inorganic fiber material. Dynea Oy. EP2222907 (B1).

  • Van Herwijnen, H.W.G., Kowatsch, S., Wagner, R.A. (2005) Silanes as efficient additives for resins. In: Organosilicon Chemistry VI, From Molecules to Materials. Eds. Auner, N., Weis, J. Wiley-VHC, Weinheim, Germany. pp. 722–728.

  • Van Herwijnen, H.W.G., Pisanova, E., Stefke, B. (2013) Renewable binder for nonwoven materials. Dynea Chemicals Oy. EP2077977 (B1).

  • Villasmil, W., Fischer, L.J., Worlitschek, J. (2019) A review and evaluation of thermal insulation materials and methods for thermal energy storage systems. Renew. Sust. Energ. Rev. 103:71–84.

    • Crossref
    • Export Citation
  • Vithanage, A.E., Chowdhury, E., Alejo, L.D., Pomeroy, P.C., DeSisto, W.J., Frederick, B.G., Gramlich, W.M. (2017) Renewably sourced phenolic resins from lignin bio-oil. J. Appl. Polym. Sci. 134:44827.

  • Wahyuningsih, S., Ramelan, A.H., Rahmawati, P., Tamtama, B.P.N., Sari, P.P., Ichsan, S., Kristiawan, Y.R., Aini, F.N. (2017) Development of refined natural resin based Cashew Nut Shell Oil Liquid (CNSL) for brake pads composite. IOP Conf. Ser.: Mater. Sci. Eng. 176:012051.

  • Wang, M., Leitch, M., Xu, C. (2009) Synthesis of phenol–formaldehyde resol resins using organosolv pine lignins. Eur. Polym. J. 45:3380–3388.

    • Crossref
    • Export Citation
  • Watkins, D., Nuruddin, M., Hosur, M., Tcherbi-Narteh, A., Jeelani, S. (2015) Extraction and characterization of lignin from different biomass resources. J. Mater. Res. Technol. 4:26–32.

    • Crossref
    • Export Citation
  • Yu, C., Crump, D. (1998) A review of the emission of VOCs from polymeric materials used in buildings. Build. Environ. 33:357–374.

    • Crossref
    • Export Citation
  • Zhang, D., Dumont, M.-J. (2017) Advances in polymer precursors and bio-based polymers synthesized from 5-hydroxymethylfurfural. J. Polym. Sci. A Pol. Chem. 55:1478–1492.

    • Crossref
    • Export Citation
  • Zhang, L., Steinmaus, C., Eastmond, D.A., Xin, X.K., Smith, M.T. (2009) Formaldehyde exposure and leukemia: a new meta-analysis and potential mechanisms. Mutat. Res. Rev. 681:150–168.

    • Crossref
    • Export Citation
  • Zhang, Y., Yuan, Z., Xu, C.C. (2015) Engineering biomass into formaldehyde-free phenolic resin for composite materials. AlChE J. 61:1275–1283.

    • Crossref
    • Export Citation
  • Zhang, Y., Yuan, Z., Mahmood, N., Huang, S., Xu, C. (2016) Sustainable bio-phenol-hydroxymethylfurfural resins using phenolated de-polymerized hydrolysis lignin and their application in bio-composites. Ind. Crops Prod. 79:84–90.

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Holzforschung is an international scholarly journal that publishes cutting-edge research on the biology, chemistry, physics and technology of wood and wood components. High quality papers about biotechnology and tree genetics are also welcome. Rated year after year as one of the top scientific journals in the category of Pulp and Paper (ISI Journal Citation Index), Holzforschung represents innovative, high quality basic and applied research.

Search