Effect of different catalysts on the oxyalkylation of eucalyptus Lignoboost® kraft lignin

Fernanda R. Vieira 1 , Ana Barros-Timmons 1 , Dmitry V. Evtuguin 1  and Paula C. R. Pinto 2
  • 1 CICECO- Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
  • 2 RAIZ, Forest and Paper Research Institute, Quinta de S. Francisco, 3801-501, Eixo, Portugal
Fernanda R. Vieira
  • CICECO- Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Ana Barros-Timmons
  • Corresponding author
  • CICECO- Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Dmitry V. Evtuguin
  • CICECO- Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Paula C. R. Pinto
  • RAIZ, Forest and Paper Research Institute, Quinta de S. Francisco, 3801-501, Eixo, Portugal
  • Search for other articles:
  • degruyter.comGoogle Scholar

Abstract

Lignin obtained by Lignoboost® procedure from black liquor after kraft pulping of Eucalyptus globulus wood was characterized and converted into liquid polyols via an innovative and safe procedure using base catalyzed oxyalkylation with propylene carbonate (PC). The effect of four catalysts, Potassium carbonate (K2CO3), 1,8-diazabicyclo [5.4.0] undec-7-ene (DBU), dicyanodiamide (DICY), and 1,4-diazabicyclo [2.2.2] octane (DABCO) was evaluated in terms of lignin polyol yield and weight gain. The ensuing polyols were also characterized by fourier transform infrared (FTIR), 1H NMR, 13C NMR, and size exclusion chromatography (SEC) to determine the degree of the substitution (DS), degree of polymerization (DP), and the molecular weight, respectively. Only a minor proportion of PC (ca. 3–15%) was converted to propylene glycol/homooligomers as revealed by high performance liquid chromatography (HPLC). All catalysts promoted preferential derivatization of lignin phenolic OH groups by oxypropyl moieties. The maximum average DP of propylene oxide chains in oxyalkylated Lignoboost® kraft lignin (oKL) was 1.85 per one phenylpropane unit (PPU) using DBU. Conversely, the DP of oKL using DICY was very low (0.27/PPU). DICY’s catalytic activity seems to be jeopardized due to the formation of unreactive adducts with lignin. The oKL obtained using DBU, DABCO, and K2CO3 have potential to be used as polyols in the production of polyurethanes as the corresponding hydroxyl number (IOH) is in the range of 198–410 mg KOH g−1.

  • Akil, Y., Lorenz, D., Lehnen, R., and Saake, B. (2016). Safe and non-toxic hydroxyalkylation of xylan using propylene carbonate. Eur. Polym. J. 77: 88–97, https://doi.org/10.1016/j.eurpolymj.2016.02.010.

    • Crossref
    • Export Citation
  • Alves, M., Grignard, B., Gennen, S., Detrembleur, C., Jerome, C., and Tassaing, T. (2015). Organocatalytic synthesis of bio-based cyclic carbonates from CO2 and vegetable oils. RSC Adv. 5: 53629–53636, https://doi.org/10.1039/C5RA10190E.

    • Crossref
    • Export Citation
  • ASTM D4662-08 (2011). Standard Test Methods for Testing Polyurethane Raw Materials: Determination of acid and alkalinity numbers of polyols. ASTM International, Philadelphia, USA.

  • Baghernejad, B. (2010). 1,4- Diazabicyclo[2.2.2]octane (DABCO) as a useful catalyst in organic synthesis. Eur. J. Chem. 1: 54–50, https://doi.org/10.5155/eurjchem.1.1.54-60.2.

    • Crossref
    • Export Citation
  • Cateto, C.A., Barreiro, M.F., Rodrigues, A.E., Brochier-Salon, M.C., Thielemans, W., and Belgacem, M.N. (2008). Lignins as macromonomers for polyurethane synthesis: a comparative study on hydroxyl group determination. J. Appl. Polym. Sci. 109: 3008–3017, https://doi.org/10.1002/app.28393.

    • Crossref
    • Export Citation
  • Cateto, C.A., Barreiro, M.F., Rodrigues, A.E., and Belgacem, M.N. (2009). Optimization study of lignin oxypropylation in view of the preparation of polyurethane rigid foams. Ind. Eng. Chem. Res. 48: 2583–2589, https://doi.org/10.1021/ie801251r.

    • Crossref
    • Export Citation
  • Duval, A. and Avérous, L. (2016). Oxyalkylation of condensed tannin with propylene carbonate as an alternative to propylene oxide. Sustain. Chem. Eng. 4: 3103–3112, https://doi.org/10.1021/acssuschemeng.6b00081.

    • Crossref
    • Export Citation
  • Duval, A. and Avérous, L. (2017). Cyclic carbonates as safe and versatile etherifying reagents for the functionalization of lignins and tannins. Sustain. Chem. Eng. 5: 7334–7343, https://doi.org/10.1021/acssuschemeng.7b01502.

    • Crossref
    • Export Citation
  • Evtiouguina, M., Barros-Timmons, A., Cruz-Pinto, J.J., Neto, C.P., Belgacem, M.N., and Gandini, A. (2001). Oxypropylation of cork and the use of the ensuing polyols in polyurethane formulations. Biomacromolecules 3: 57–62, https://doi.org/10.1021/bm010100c.

  • Evtuguin, D.V., Andreolety, J.P., and Gandini, A. (1998). Polyurethanes based on oxygen-organosolv lignin. Eur. Polym. J. 34: 1163–1169, https://doi.org/10.1016/s0014-3057(97)00245-0.

    • Crossref
    • Export Citation
  • Evtuguin, D.V., Neto, C.P., Silva, A.M.S., Domingues, P.M., Amado, F.M.L., Robert, D., and Faix, O. (2001). Comprehensive study on the chemical structure of dioxane lignin from plantation Eucalyptus globulus wood. J. Agric. Food Chem. 49: 4252–4261, https://doi.org/10.1021/jf010315d.

    • Crossref
    • Export Citation
  • Figueiredo, P., Lintinen, K., Hirvonen, J.T., Kostiainen, M.A., and Santos, H.A. (2018). Properties and chemical modifications of lignin: towards lignin-based nanomaterials for biomedical applications. Prog. Mater. Sci. 93: 233–69, https://doi.org/10.1016/j.pmatsci.2017.12.001.

    • Crossref
    • Export Citation
  • Gao, Y. and Yunzhao Y. (2002). The synergistic effect of dicyandiamide and resorcinol in the curing of epoxy resins. J. Appl. Polym. Sci. 89: 1869–1874, https://doi.org/10.1002/app.12316.

  • Glasser, W.G. and Hsu, O.H.H. (1977). Polyurethane intermediates and products and methods of producing same from lignin, US Patent number: 4017474.

  • Güthner, T., Mertschenk, B., and Schulz, B. (2012). Guanidine and derivatives. In:Ullmann’s encyclopedia of industrial chemistry, Vol. 17, Wiley-VCH, Germany, pp. 182–185.

  • Ionescu, M. (2005). Chemistry and technology of polyols for polyurethanes. Rapra Technology Limited, Shropshire, UK, pp. 37–41.

  • Jasiukaitytė-Grojzdek, E., Kunaverf, M., and Crestini, C. (2012). Lignin structural changes during liquefaction in acidified ethylene glycol. J. Wood Chem. Technol. 32: 342–360, https://doi.org/10.1080/02773813.2012.698690.

    • Crossref
    • Export Citation
  • Jin, Y., Ruan, X., Cheng, X., and Lü, Q. (2011). Liquefaction of lignin by polyethyleneglycol and glycerol. Bioresour. Technol. 102: 3581–3583, https://doi.org/10.1016/j.biortech.2010.10.050.

    • Crossref
    • PubMed
    • Export Citation
  • Kühnel, I., Podschun, J., Saake, B., and Lehnen R. (2015). Synthesis of lignin polyols via oxyalkylation with propylene carbonate. Holzforschung 69: 531–538, https://doi.org/10.1515/hf-2014-0068.

    • Crossref
    • Export Citation
  • Kühnel, I., Saake, B., and Lehnen, R. (2017a). Comparison of different cyclic organic carbonates in the oxyalkylation of various types of lignin. React. Func. Polym. 120: 83–91, https://doi.org/10.1016/j.reactfunctpolym.2017.09.011.

    • Crossref
    • Export Citation
  • Kühnel, I., Saake, B., and Lehnen, R. (2017b). Oxyalkylation of lignin with propylene carbonate: influence of reaction parameters on the ensuing bio-based polyols. Ind. Crop. Prod. 101: 75–83, https://doi.org/10.1016/j.indcrop.2017.03.002.

    • Crossref
    • Export Citation
  • Liu, H., Chung, H. (2017). Lignin-based polymers via graft copolymerization. J. Polym. Sci., Part A: Polym. Chem. 55: 3515–3528, https://doi.org/10.1002/pola.28744.

    • Crossref
    • Export Citation
  • Lohmeijer, B.G., Pratt, R.P., Leibfarth, F., Logan, J.W., Long, D.A., Dove, A.P., Nederberg, F., Choi, J.,Wade, C., Waymouth, R.M., and Hedrick, J.L. (2006). Guanidine and amidine organocatalysts for ring-opening polymerization of cyclic esters. Macromolecules 39: 8574–8583, https://doi.org/10.1021/ma0619381.

    • Crossref
    • Export Citation
  • Magina, S., Santos, A.P., and Evtuguin, D.V. (2015). Study on the residual lignin in Eucalyptus globulus sulphite pulp. Holzforschung 69: 513–522, https://doi.org/10.1515/hf-2014-0218.

    • Crossref
    • Export Citation
  • Matsuo, J., Nakano, S., Sanda, F., and Endo, T. (1998). Ring-opening polymerization of cyclic carbonates by alcohol – acid catalyst. J. Polym. Sci., Part A: Polym. Chem. 36: 2463–2471, https://doi.org/10.1002/(SICI)1099-0518(199810)36:14<2463::AID-POLA4>3.0.CO;2-U.

    • Crossref
    • Export Citation
  • Nadji, H., Bruzzèse, C., Belgacem, M.N., Benaboura, A., and Gandini, A. (2005). Oxypropylation of lignins and preparation of rigid polyurethane foams from the ensuing polyols. Macromol. Mater. Eng. 290: 1009–1016, https://doi.org/10.1002/mame.200500200.

    • Crossref
    • Export Citation
  • Pinto, P.C., Evtuguin, D.V., Pascoal Neto, C., and Silvestre, A.J.D. (2002). Behaviour of Eucalyptus globulus lignin during kraft pulping. Part 2. Analysis by NMR, ESI/MS and GPC techniques. J. Wood Chem. Technol. 22: 109–125, https://doi.org/10.1081/WCT-120013356.

    • Crossref
    • Export Citation
  • Prozil, S.O., Evtuguin, D.V., Silva, A.M.S, and Lopes, L. P.C. (2014). Structural characterization of lignin from grape stalks (Vitis vinifera L.). J. Agric. Food Chem. 62: 5420–5428, https://doi.org/10.1021/jf502267s.

    • Crossref
    • PubMed
    • Export Citation
  • Rokicki, G. (2000). Aliphatic cyclic carbonates and spiroorthocarbonates as monomers. Prog. Polym. Sci. 25: 259–342, https://doi.org/10.1016/s0079-6700(00)00006-x.

    • Crossref
    • Export Citation
  • Sadeghifar, H., Cui, C., and Argyropoulos, D.S. (2012). Toward thermoplastic lignin polymers. Part 1. selective masking of phenolic hydroxyl groups in kraft lignins via methylation and oxypropylation chemistries. Ind. Eng. Chem. Res. 51: 16713–16720, https://doi.org/10.1021/ie301848j.

    • Crossref
    • Export Citation
  • Segura, D.M., Nurse, A.D., Mccourt, A., Phelps, R., and Segura. A. (2005). Chemistry of polyurethane adhesives and sealants. In: Cognard, P. (Ed.). Handbook of adhesives and sealants. Elsevier, Oxford, pp. 102–162.

  • Sherck, N.J., Kim, H.C., and Won, Y. (2016). Elucidating a unified mechanistic scheme for the dbu-catalyzed ring-opening polymerization of lactide to poly(lactic acid). Macromolecules 49: 4699–4713, https://doi.org/10.1021/acs.macromol.6b00621.

    • Crossref
    • PubMed
    • Export Citation
  • Soós, L., Deák, G., Kéki, S., and Zsuga, M. (1999). Anionic bulk oligomerization of ethylene and propylene carbonate initiated by bisphenol-A/base systems. J. Polym. Sci., Part A: Polym. Chem. 37: 545–550, https://doi.org/10.1002/(sici)1099-0518(19990301)37:5<545::aid-pola4>3.0.co;2-t.

    • Crossref
    • Export Citation
  • Taylor, J.E., Bull, S.D., and Williams, J.M.J. (2012). Amidines, isothioureas, and guanidines as nucleophilic catalysts. Chem. Soc. Rev. 41: 2109–2121, https://doi.org/10.1039/c2cs15288f.

    • Crossref
    • PubMed
    • Export Citation
  • Tomani, P.E. (2010). The LignoBoost process. Cellu. Chem. Tech. 44: 53–58.

  • Tribot, A., Amer M., Alio, M.A., Baynast, H., Delattre, C., Pons, A., Mathias, J.D., Callois, J.M., Vial, C., Michaud, P., et al. (2019). Wood-lignin: supply, extraction processes and use as bio-based material. Eur. Polym. J. 112: 228–240, https://doi.org/10.1016/j.eurpolymj.2019.01.007.

    • Crossref
    • Export Citation
  • Zhang, X., Chen, M., Liu, C., Zhang, A., and Sun, R. (2015). Ring-opening graft polymerization of propylene carbonate onto xylan in an ionic liquid. Molecules 20: 6033–6047, https://doi.org/10.3390/molecules20046033.

    • Crossref
    • Export Citation
  • Zhang, X., Kim, Y., Islam, E., Taylor , M., Eberhardt, T.L., Hassan, E.B, Shmulsky, R. (2019). Rigid polyurethane foams containing lignin oxyalkylated with ethylene carbonate and polyethylene glycol. Ind. Crops Prod. 141: 111797, https://doi.org/10.1016/j.indcrop.2019.111797.

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Holzforschung is an international scholarly journal that publishes cutting-edge research on the biology, chemistry, physics and technology of wood and wood components. High quality papers about biotechnology and tree genetics are also welcome. Rated year after year as one of the top scientific journals in the category of Pulp and Paper (ISI Journal Citation Index), Holzforschung represents innovative, high quality basic and applied research.

Search