Preparation of kraft lignin-based activated carbon fiber electrodes for electric double layer capacitors using an ionic liquid electrolyte

Nutthira Pakkang 1 , Manish Kumar 1 , Shogo Taira 1 , Keiichi Koda 2 , Kengo Shigetomi 2  and Yasumitsu Uraki 2
  • 1 Graduate School of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
  • 2 Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589, Japan
Nutthira Pakkang, Manish Kumar, Shogo Taira, Keiichi Koda, Kengo Shigetomi and Yasumitsu Uraki

Abstract

This article demonstrates the development of activated carbon fiber electrodes produced from hardwood kraft lignin (HKL) to fabricate electric double layer capacitors (EDLCs) with high energy and power densities using an ionic liquid (IL) electrolyte. A mixture solution of HKL, polyethylene glycol as a sacrificial polymer, and hexamethylenetetramine as a crosslinker in dimethylformamide/acetic acid (6/4) was electrospun, and the obtained fibers were easily thermostabilized, followed by carbonization and steam activation to yield activated carbon fibers (ACFs). The electrochemical performance of EDLCs assembled with the ACFs, 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIBF4) as an IL electrolyte and a cellulosic separator was insufficient due to the low conductivity of the electrode. The conductivity of the electrode was improved successfully by spraying conductive carbon black (CB) onto the fibers mat during electrospinning. The CB containing electrodes with improved conductivity gave the resulting EDLCs a higher electrochemical performance, with an energy density of 91.5 Wh kg−1 and a power density of 76.2 kW kg−1.

  • Ago, M., Borghei, M., Haataja, J.S., and Rojas, O.J. (2016). Mesoporous carbon soft-templated from lignin nanofiber networks: microphase separation boosts supercapacitance in conductive electrodes. RSC Adv. 6: 85802–85810, https://doi.org/10.1039/C6RA17536H.

    • Crossref
    • Export Citation
  • Aso, T., Koda, K., Kubo, S., Yamada, T., Nakajima, I., and Uraki, Y. (2013). Preparation of novel lignin-based cement dispersants from isolated lignins. J. Wood Chem. Technol. 33: 286–298, https://doi.org/10.1080/02773813.2013.794841.

    • Crossref
    • Export Citation
  • Braun, J.L., Holtman, K.M., and Kadla, J.F. (2005). Lignin-based carbon fibers: oxidative thermostabilization of kraft lignin. Carbon 43: 385–394, https://doi.org/10.1016/j.carbon.2004.09.027.

    • Crossref
    • Export Citation
  • Cericola, D., Ruch, P., Foelske-Schmitz, A., Weingarth, D., Kötz, R., (2011). Effect of water on the aging of activated carbon based electrochemical double layer capacitors during constant voltage load tests. Int. J. Electrochem. Sci. 6, 988–996. https://journals.indexcopernicus.com/search/details?id=8778.

  • Chmiola, J., Yushin, G., Gogotsi, Y., Portet, C., Simon, P., and Taberna, L.P. (2006). Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313: 1760–1763, https://doi.org/10.1126/science.1132195.

    • Crossref
    • PubMed
    • Export Citation
  • Cline, S.P. and Smith, P.M. (2017). Opportunities for lignin valorization: an exploratory process. Energy Sustain. Soc. 7: 26, https://doi.org/10.1186/s13705-017-0129-9.

    • Crossref
    • Export Citation
  • Daraghmeh, A., Hussain, S., Saadeddin, I., Servera, L., Xuriguera, E., Cornet, A., and Cirera, A. (2017). A study of carbon nanofibers and active carbon as symmetric supercapacitor in aqueous electrolyte: a comparative study. Nanoscale Res. Lett. 12: 639, https://doi.org/10.1186/s11671-017-2415-z.

    • Crossref
    • PubMed
    • Export Citation
  • De Vos, N., Maton, C., and Stevens, C.V. (2014). Electrochemical stability of ionic liquids: general influences and degradation mechanisms. ChemElectroChem 1: 1258–1270, https://doi.org/10.1002/celc.201402086.

    • Crossref
    • Export Citation
  • Den, W., Sharma, V.K., Lee, M., Nadadur, G., and Varma, R.S. (2018). Lignocellulosic biomass transformations via greener oxidative pretreatment processes: access to energy and value-added chemicals. Front. Chem. 6: 141, https://doi.org/10.3389/fchem.2018.00141.

    • Crossref
    • PubMed
    • Export Citation
  • Deng, L., Young, R.J., Kinloch, I.A., Abdelkader, A.M., Holmes, S.M., Rio, D.A.D.H.D., and Eichhorn, S.J. (2013). Supercapacitance from cellulose and carbon nanotube nanocomposite fibers. ACS Appl. Mater. Interfaces 5: 9983-9990, https://doi.org/10.1021/am403622v.

    • Crossref
    • PubMed
    • Export Citation
  • Dikio, E.D., Shooto, N.D., Thema, F.T., and Farah, A.M. (2013). Raman and TGA study of carbon nanotubes synthesized over Mo/Fe catalyst on aluminium oxide, calcium carbonate and magnesium oxide support. Chem. Sci. Trans. 2: 1160–1173, https://doi.org/10.7598/cst2013.519.

  • Dresselhaus, M.S., Jorio, A., Hofmann, M., Dresselhaus, G., and Saito, R. (2010). Perspectives on carbon nanotubes and graphene raman spectroscopy. Nano Lett. 10: 751–758, https://doi.org/10.1021/nl904286r.

    • Crossref
    • PubMed
    • Export Citation
  • Espinoza-Acosta, J.L., Torres-Chávez, P.I., Olmedo-Martínez, J.L., Vega-Rios, A., Flores-Gallardo, S., and Zaragoza-Contreras, E.A. (2018). Lignin in storage and renewable energy applications: a review. J. Energy Chem. 27: 1422–1438, https://doi.org/10.1016/j.jechem.2018.02.015.

  • Ganewatta, M.S., Lokupitiya, H.N., and Tang, C. (2019). Lignin biopolymers in the age of controlled polymerization. Polymers 11: 1176, https://doi.org/10.3390/polym11071176.

    • Crossref
    • Export Citation
  • Gao, Q., Demarconnay, L., Raymundo-Piñero, E., and Béguin, F. (2012). Exploring the large voltage range of carbon/carbon supercapacitors in aqueous lithium sulfate electrolyte. Energy Environ. Sci. 5: 9611, https://doi.org/10.1039/C2EE22284A.

    • Crossref
    • Export Citation
  • Guo, N., Li, M., Sun, X., Wang, F., and Yang, R. (2017). Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities. Green Chem. 19: 2595–2602, https://doi.org/10.1039/C7GC00506G.

    • Crossref
    • Export Citation
  • Hayyan, M., Mjalli, F.S., Hashim, M.A., AlNashef, I.M., and Mei, T.X. (2013). Investigating the electrochemical windows of ionic liquids. J. Ind. Eng. Chem. 19: 106–112, https://doi.org/10.1016/j.jiec.2012.07.011.

    • Crossref
    • Export Citation
  • Jayawickramage, R.A.P. and Ferraris, J.P. (2019). High performance supercapacitors using lignin based electrospun carbon nanofiber electrodes in ionic liquid electrolytes. Nanotechnology 30: 155402, https://doi.org/10.1088/1361-6528/aafe95.

    • Crossref
    • PubMed
    • Export Citation
  • Jayawickramage, R.A.P., Balkus, K.J., and Ferraris, J.P. (2019). Binder free carbon nanofiber electrodes derived from polyacrylonitrile-lignin blends for high performance supercapacitors. Nanotechnology 30: 355402, https://doi.org/10.1088/1361-6528/ab2274.

    • Crossref
    • PubMed
    • Export Citation
  • Kadla, J.F., Kubo, S., Venditti, R.A., Gilbert, R.D., Compere, A.L., and Griffith, W. (2002). Lignin-based carbon fibers for composite fiber applications. Carbon 40: 2913–2920, https://doi.org/10.1016/s0008-6223(02)00248-8.

    • Crossref
    • Export Citation
  • Kim, T., Jung, G., Yoo, S., Suh, K.S., and Ruoff, R.S. (2013). Activated graphene-based carbons as supercapacitor electrodes with macro- and mesopores. ACS Nano 7: 6899–6905, https://doi.org/10.1021/nn402077v.

    • Crossref
    • PubMed
    • Export Citation
  • Kiseleva, E.A., Zhurilova, M.A., Kochanova, S.A., Shkolnikov, E.J., Tarasenko, A.B., Zaitseva, O.V., Uryupina, O.V., and Valyano, G.V. (2018). Influence of carbon conductive additives on electrochemical double-layer supercapacitor parameters. J. Phys. Conf. Ser. 946: 012030, https://doi.org/10.1088/1742-6596/946/1/012030.

    • Crossref
    • Export Citation
  • Klose, M., Reinhold, R., Logsch, F., Wolke, F., Linnemann, J., Stoeck, U., Oswald, S., Uhlemann, M., Balach, J., Markowski, J., et al. (2017). Softwood lignin as a sustainable feedstock for porous carbons as active material for supercapacitors using an ionic liquid electrolyte. ACS Sustain. Chem. Eng. 5: 4094–4102, https://doi.org/10.1021/acssuschemeng.7b00058.

    • Crossref
    • Export Citation
  • Koda, K., Taira, S., Kubota, A., Isozaki, T., You, X., Uraki, Y., Sugimura, K., and Nishio, Y. (2019). Development of lignin-based terpolyester film and its application to separator material for electric double-layer capacitor. J. Wood Chem. Technol. 39: 198–213, https://doi.org/10.1080/02773813.2018.1562472.

    • Crossref
    • Export Citation
  • Kołodyńska, D., Gęca, M., Pylypchuk, I.V., and Hubicki, Z. (2016). Development of new effective sorbents based on nanomagnetite. Nanoscale Res. Lett. 11: 152, https://doi.org/10.1186/s11671-016-1371-3.

    • Crossref
    • PubMed
    • Export Citation
  • Kumar, M., Hietala, M., and Oksman, K. (2019). Lignin-based electrospun carbon nanofibers. Front. Mater. 6: 62, https://doi.org/10.3389/fmats.2019.00062.

    • Crossref
    • Export Citation
  • Lei, C., Markoulidis, F., Ashitaka, Z., and Lekakou, C. (2013). Reduction of porous carbon/Al contact resistance for an electric double-layer capacitor (EDLC). Electrochim. Acta 92: 183–187, https://doi.org/10.1016/j.electacta.2012.12.092.

    • Crossref
    • Export Citation
  • Lei, D., Li, X.D., Seo, M.K., Khil, M.S., Kim, H.Y., and Kim, B.S. (2017). NiCo2 O4 nanostructure-decorated PAN/lignin based carbon nanofiber electrodes with excellent cyclability for flexible hybrid supercapacitors. Polymer 132: 31–40, https://doi.org/10.1016/j.polymer.2017.10.051.

    • Crossref
    • Export Citation
  • Lora, J. (2008). Industrial commercial lignins: sources, properties and applications. In: Belgacem, M.N., and Gandini, A. (Eds.). Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam, pp. 225–241.

  • Luo, J., Genco, J., Cole, B., and Fort, R. (2011). Lignin recovered from the near-neutral hemicellulose extraction process as a precursor for carbon fiber. Bioresources 6: 4566–4593.

  • Mao, Z.X., Wang, C., Shan, Q., Wang, M.J., Zhang, Y., Ding, W., Chen, S., Li, L., Li, J., and Wei, Z. (2018). An unusual low-surface-area nitrogen doped carbon for ultrahigh gravimetric and volumetric capacitances. J. Mater. Chem. 6: 8868–8873, https://doi.org/10.1039/C8TA02198H.

    • Crossref
    • Export Citation
  • Mhamane, D., Suryawanshi, A., Banerjee, A., Aravindan, V., Ogale, S., and Srinivasan, M. (2013). Non-aqueous energy storage devices using graphene nanosheets synthesized by green route. AIP Adv. 3: 042112, https://doi.org/10.1063/1.4802243.

    • Crossref
    • Export Citation
  • Milotskyi, R., Szabó, L., Takahashi, K., and Bliard, C. (2019). Chemical modification of plasticized lignins using reactive extrusion. Front. Chem. 7: 633, https://doi.org/10.3389/fchem.2019.00633.

    • Crossref
    • PubMed
    • Export Citation
  • Mousavi, M.P.S., Wilson, B.E., Kashefolgheta, S., Anderson, E.L., He, S., Bühlmann, P., and Stein, A. (2016). Ionic liquids as electrolytes for electrochemical double-layer capacitors: structures that optimize specific energy. ACS Appl. Mater. Interfaces 8: 3396–3406, https://doi.org/10.1021/acsami.5b11353.

    • Crossref
    • PubMed
    • Export Citation
  • Murayama, I., Yoshimoto, N., Egashira, M., Morita, M., Kobayashi, Y., and Ishikawa, M. (2005). Characteristics of electric double layer capacitors with an ionic liquid electrolyte containing Li ion. Electrochemistry 73: 600–602, https://doi.org/10.5796/electrochemistry.73.600.

    • Crossref
    • Export Citation
  • Neimark, A.V., Lin, Y., Ravikovitch, P.I., and Thommes, M. (2009). Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons. Carbon 47: 1617–1628, https://doi.org/10.1016/j.carbon.2009.01.050.

    • Crossref
    • Export Citation
  • Norberg, I., Nordström, Y., Drougge, R., Gellerstedt, G., and Sjöholm, E. (2012). A new method for stabilizing softwood kraft lignin fibers for carbon fiber production. J. Appl. Polym. Sci. 128: 3824–3830, https://doi.org/10.1002/app.38588.

  • Pandit, B., Dubal, D.P., and Sankapal, B.R. (2017). Large scale flexible solid state symmetric supercapacitor through inexpensive solution processed V2O5 complex surface architecture. Electrochim. Acta 242: 382–389, https://doi.org/10.1016/j.electacta.2017.05.010.

    • Crossref
    • Export Citation
  • Park, J.H., Rana, H.H., Lee, J.Y., and Park, H.S. (2019). Renewable flexible supercapacitors based on all-lignin-based hydrogel electrolytes and nanofiber electrodes. J. Mater. Chem. A 7: 16962–16968, https://doi.org/10.1039/C9TA03519B.

    • Crossref
    • Export Citation
  • Ramachandran, R. and Wang, F. (2018). Electrochemical capacitor performance: influence of aqueous electrolytes. In: Liudvinavicius, L. (Ed.). Supercapacitors – theoretical and practical solutions. InTech, London, UK, pp. 52–68.

  • Saha, D., Li, Y., Bi, Z., Chen, J., Keum, J.K., Hensley, D.K., Grappe, H.A., Meyer, H.M., Dai, S., Paranthaman, M.P., et al. (2014). Studies on supercapacitor electrode material from activated lignin-derived mesoporous carbon. Langmuir 30: 900–910, https://doi.org/10.1021/la404112m.

    • Crossref
    • PubMed
    • Export Citation
  • Salmani, L. and Nouri, M. (2016). Electrospun silk fibroin nanofibers with improved surface texture. J. Text. Polym. 4: 75.

  • Sangchoom, W., Walsh, D.A., and Mokaya, R. (2018). Valorization of lignin waste: high electrochemical capacitance of lignin-derived carbons in aqueous and ionic liquid electrolytes. J. Mater. Chem. A, 6: 18701–18711, https://doi.org/10.1039/C8TA07632D.

    • Crossref
    • Export Citation
  • Shiraishi, S., Miyauchi, T., Sasaki, R., Nishina, N., Oya, A., and Hagiwara, R. (2007). Electric double layer capacitance of activated carbon nanofibers in ionic liquid: EMImBF4. Electrochemistry 75: 619–621, https://doi.org/10.5796/electrochemistry.75.619.

    • Crossref
    • Export Citation
  • Sing, K.S.W. (1982). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (provisional). Pure Appl. Chem. 54: 2201–2218, https://doi.org/10.1351/pac198254112201.

    • Crossref
    • Export Citation
  • Sixta, H. (2008). Handbook of pulp. Wiley-VCH Verlag, Weinheim.

  • Soeda, K., Yamagata, M., and Ishikawa, M. (2015). Outstanding features of alginate-based gel electrolyte with ionic liquid for electric double layer capacitors. J. Power Sources 280: 565–572, https://doi.org/10.1016/j.jpowsour.2015.01.144.

    • Crossref
    • Export Citation
  • Szabó, L., Milotskyi, R., Fujie, T., Tsukegi, T., Wada, N., Ninomiya, K., and Takahashi, K. (2019). Short carbon fiber reinforced polymers: utilizing lignin to engineer potentially sustainable resource-based biocomposites. Front. Chem. 7, https://doi.org/10.3389/fchem.2019.00757.

    • PubMed
    • Export Citation
  • Taira, S., Kurihara, M., Koda, K., Sugimura, K., Nishio, Y., and Uraki, Y. (2019). TEMPO-oxidized cellulose nanofiber-reinforced lignin based polyester films as a separator for electric double-layer capacitor. Cellulose 26: 569–580, https://doi.org/10.1007/s10570-018-2101-z.

    • Crossref
    • Export Citation
  • Thakur, V.K., Thakur, M.K., Raghavan, P., and Kessler, M.R. (2014). Progress in green polymer composites from lignin for multifunctional applications: a review. ACS Sustain. Chem. Eng. 2: 1072–1092, https://doi.org/10.1021/sc500087z.

    • Crossref
    • Export Citation
  • Tuck, C.O., Perez, E., Horvath, I.T., Sheldon, R.A., and Poliakoff, M. (2012). Valorization of biomass: deriving more value from waste. Science 337: 695–699, https://doi.org/10.1126/science.1218930.

    • Crossref
    • PubMed
    • Export Citation
  • Uraki, Y., Kubo, S., Nigo, N., Sano, Y., and Sasaya, T. (1995). Preparation of carbon fibers from organosolv lignin obtained by aqueous acetic acid pulping. Holzforschung 49: 343–350, https://doi.org/10.1515/hfsg.1995.49.4.343.

    • Crossref
    • Export Citation
  • Uraki, Y., Nakatani, A., Kubo, S., and Sano, Y. (2001). Preparation of activated carbon fibers with large specific surface area from softwood acetic acid lignin. J. Wood Sci. 47: 465–469, https://doi.org/10.1007/bf00767899.

    • Crossref
    • Export Citation
  • Wang, J., Tang, J., Xu, Y., Ding, B., Chang, Z., Wang, Y., Hao, X., Dou, H., Kim, J.H., Zhang, X., et al. (2016). Interface miscibility induced double-capillary carbon nanofibers for flexible electric double layer capacitors. Nano Energy 28: 232–240, https://doi.org/10.1016/j.nanoen.2016.08.043.

    • Crossref
    • Export Citation
  • Wang, X., Li, Y., Lou, F., Buan, M.E.M., Sheridan, E., and Chen, D. (2017). Enhancing capacitance of supercapacitor with both organic electrolyte and ionic liquid electrolyte on a biomass-derived carbon. RSC Adv. 7: 23859–23865, https://doi.org/10.1039/C7RA01630A.

    • Crossref
    • Export Citation
  • Welton, T. (1999). Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev. 99: 2071–2084, https://doi.org/10.1021/cr980032t.

    • Crossref
    • PubMed
    • Export Citation
  • Yang, C.S., Shang, D.S., Chai, Y.S., Yan, L.Q., Shen, B.G., and Sun, Y. (2016). Moisture effects on the electrochemical reaction and resistance switching at Ag/molybdenum oxide interfaces. Phys. Chem. Chem. Phys. 18: 12466–12475, https://doi.org/10.1039/C6CP00823B.

    • Crossref
    • PubMed
    • Export Citation
  • You, X., Koda, K., Yamada, T., and Uraki, Y. (2015). Preparation of electrode for electric double layer capacitor from electrospun lignin fibers. Holzforschung 69: 1097–1106, https://doi.org/10.1515/hf-2014-0262.

    • Crossref
    • Export Citation
  • You, X., Koda, K., Yamada, T., and Uraki, Y. (2016a). Preparation of high-performance internal tandem electric double-layer capacitors (IT-EDLCs) from melt-spun lignin fibers. J. Wood Chem. Technol. 36: 418–431, https://doi.org/10.1080/02773813.2016.1212893.

    • Crossref
    • Export Citation
  • You, X., Duan, J., Koda, K., Yamada, T., and Uraki, Y. (2016b). Preparation of electric double layer capacitors (EDLCs) from two types of electrospun lignin fibers. Holzforschung 70: 661–671, https://doi.org/10.1515/hf-2015-0175.

    • Crossref
    • Export Citation
  • Zhang, K., Liu, M., Zhang, T., Min, X., Wang, Z., Chai, L., and Shi, Y. (2019). High-performance supercapacitor energy storage using a carbon material derived from lignin by bacterial activation before carbonization. J. Mater. Chem. A 7: 26838–26848, https://doi.org/10.1039/C9TA04369A.

    • Crossref
    • Export Citation
  • Zuliani, E.J., Zereen, M., Charles, Q.J., Donald, W.K. (2013). Effects of temperature on electrochemical double layer capacitor performance using activated carbon electrodes. In: 223rd ECS meeting. The Electrochemical Society, Canada.

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Holzforschung is an international scholarly journal that publishes cutting-edge research on the biology, chemistry, physics and technology of wood and wood components. High quality papers about biotechnology and tree genetics are also welcome. Rated year after year as one of the top scientific journals in the category of Pulp and Paper (ISI Journal Citation Index), Holzforschung represents innovative, high quality basic and applied research.

Search