Multi-step purification method of water-soluble oligosaccharides produced from hardwood and softwood

Juliette Francillon 1 , Christine Chirat 2 , Claire Boisset 3  and Laurine Buon 3
  • 1 Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
  • 2 Université Grenoble Alpes, CNRS, Institute of Engineering Université Grenoble-Alpes (Grenoble INP), LGP2, F-38000 Grenoble, France
  • 3 Université Grenoble Alpes, CNRS, CERMAV, 38000 Grenoble, France
Juliette Francillon, Christine Chirat
  • Corresponding author
  • Université Grenoble Alpes, CNRS, Institute of Engineering Université Grenoble-Alpes (Grenoble INP), LGP2, F-38000 Grenoble, France
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
, Claire Boisset and Laurine Buon

Abstract

Pressurized hot water pretreatment was performed on softwood (SW) and hardwood (HW) chips following the same conditions (1 h at 170 °C) in order to partly hydrolyse hemicelluloses. The complete characterization of these sugar enriched autohydrolysates (AH) being rather complex, two different purification methods were conducted. Nanofiltration (NF) 1kDa membrane and ultrafiltration (UF) 3 and 5kDa membranes were used to separate oligosaccharides (OS) from undesired compounds and for their molar mass fractionation. Granulated activated charcoal (GAC) adsorption was also used for hydrolysates detoxification. The chemical nature of OS and side charge groups vary significantly depending of the fractions obtained, e. g. xylans' chain length is positively correlated with the degree of acetylation. UF at 5kDa allows for the total separation of galactoglucomannans (GGMs) from xylans, in SW AH, however, this result was not achieved with HW. From the acid soluble lignin (ASL) removal point of view, membrane filtration from 1kDa is more efficient than activated carbon treatment concerning HW AH, on the contrary to SW AH. Regarding the lignin to OS ratio, for both species, GAC leads to a better sugar purity.

  • Almeida, J.R.M., Bertilsson, M., and Gorwa-Grauslund, M.F. (2009). Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl. Microbiol. Biotechnol. 82: 625, https://doi.org/10.1007/s00253-009-1875-1.

    • Crossref
    • PubMed
    • Export Citation
  • Boucher, J., Chirat, C., and Lachenal, D. (2014). Extraction of hemicelluloses from wood in a pulp biorefinery, and subsequent fermentation into ethanol. Energy Convers. Manag. 88: 1120–1126, https://doi.org/10.1016/j.enconman.2014.05.104.

    • Crossref
    • Export Citation
  • Brasch, D.J. and Free, K.W. (1965). Prehydrolysis-Kraft pulping of Pinus radiata grown in New Zealand. Tappi. 48: 245–248.

  • Capek, P., Kubackova, M., Alföldi, J., Bilisics, L., Liskova, D., and Kakoniova, D. (2000). Galactoglucomannan from the secondary cell wall of Picea abies L. Karst. Carbohyd. Res. 329: 635–645, https://doi.org/10.1016/s0008-6215(00)00210-x.

    • Crossref
    • Export Citation
  • Conner, A.H., and Lorenz, L.F. (1986). Kinetic modeling of hardwood prehydrolysis. Part III: water and dilute acetic acid prehydrolysis of southern red oak. Wood Fiber Sci. 18: 248–263.

  • Curmi, H., Chirat, C., Brochier Salon, M.-C., and Lachenal, D. (2018). Effect of autohydrolysis on alkaline delignification of mixed hardwood chips and on lignin structure. Holzforschung. 72: 631–636, https://doi.org/10.1515/hf-2017-0196.

    • Crossref
    • Export Citation
  • De Cherisey H. (2015). Etat de l'art sur la production de molécules chimiques issues du bois en France. Report No 1401C0052. Agence de l'environnement et la maitrise de l'énergie: ADEME, Angers, France.

  • Deloule, V., Boisset, C., Chroboczek, J., Toussaint, B., and Chirat, C. (2016). Preparation of softwood hemicellulose fractions for the study of their potential prebiotic effect. 14th EWLP, Autrans, France. Proceedings, pp. 83–86.

  • Desharnais, L., Du, F., and Brosse, N. (2011). Optimization of galactoglucomannans and acidic arabinans recovery in softwood. Ind. Eng. Chem. Res. 50: 14217–14220, https://doi.org/10.1021/ie202273d.

    • Crossref
    • Export Citation
  • E4tech, RE-CORD and WUR. (2015). From the sugar platform to biofuels and biochemicals. Final report for the European Commission, contract No. ENER/C2/423-2012/SI2.673791.

  • Fengel, D. and Wegener, G. (1984). Wood – chemistry, ultrastructure, reactions. De Gruyter, Berlin.

  • Gullón, P., Gullón, B., Cardelle-Cobas, A., Alonso, J.L., Pintado, M., and Gomes, A.M. (2014). Effects of hemicellulose-derived saccharides on behavior of Lactobacilli under simulated gastrointestinal conditions. Food. Res. Int. 64: 880–888, https://doi.org/10.1016/j.foodres.2014.08.043.

    • Crossref
    • PubMed
    • Export Citation
  • Gütsch, J.S. and Sixta H. (2010). Purification of Eucalyptus globulus water prehydrolyzates using the HiTAC process (high-temperature adsorption on activated charcoal). Holzforschung. 65: 511–518, https://doi.org/10.1515/hf.2011.065.

  • Han, W., Zhao, C., Elder, T., Chen, K., Yang, R., Kim, D., Pu, Y., Hsieh, J., and Ragauskas, A. (2012). Study on the modification of bleached eucalyptus kraft pulp using birch xylan. Carbohyd. Polym. 88: 719–725, https://doi.org/10.1016/j.carbpol.2012.01.025.

    • Crossref
    • Export Citation
  • Jacobs A., Lundqvist J., Stålbrand H., Tjerneld F., and Dahlman O. (2002). Characterization of water-soluble hemicelluloses from spruce and aspen employing SEC/MALDI mass spectroscopy, Carbohyd. Res. 337: 711–717, https://doi.org/10.1016/s0008-6215(02)00054-x.

    • Crossref
    • Export Citation
  • Kleen, M., Pranovich, A., and Willför, S. (2016). Statistical modeling of pressurized hot-water batch extraction (PHWE) to produce hemicelluloses with desired properties. Holzforschung 70: 633–640, https://doi.org/10.1515/hf-2015-0048. In press.

    • Crossref
    • Export Citation
  • Lehtonen, M., Teräslahti, S., Xu, C., Yadav, M.P., Lampi, A.-M., and Mikkonen, K.S. (2016). Spruce galactoglucomannans inhibit lipidoxidation in rapeseed oil-in-water emulsions. Food Hydrocolloid. 58: 255–266, https://doi.org/10.1016/j.foodhyd.2016.03.006.

    • Crossref
    • Export Citation
  • Maekawa E., Ichizawa T., and Koshijima T. (1989). An evaluation of the acid-soluble lignin determination in analyses of lignin by the sulfuric acid method. J. Wood Chem. Technol. 9: 549–567, https://doi.org/10.1080/02773818908050315.

    • Crossref
    • Export Citation
  • McDonald-Wharry J. (2010). Characterisation of watersoluble polysaccharides produced during prehydrolysis of Pinus radiata. PhD Thesis of The University of Waikato, New Zealand.

  • McKibbins, S.W., Harris, J.F., Saeman, J.F., and Neill, W.K. (1962). Chemical conversion of wood residues. Part V: kinetics of the acid catalyzed conversion of glucose to 5-hydroxymethyl-2-furaldehyde and levulinic acid. Forest Prod. J. 12: 17–23.

  • Morais de Carvalho, D., Martinez-Abad, A., Evtuguin, D.V., Colodette, J.L., Lindstrom, M.E., Vilaplana, F., and Sevastyanova, O. (2017). Isolation and characterization of acetylated glucuronoarabinoxylan from sugarcane bagasse and straw. Carbohydr. Polym. 156: 223–234, https://doi.org/10.1016/j.carbpol.2016.09.022.

    • Crossref
    • PubMed
    • Export Citation
  • Moure, A., Gullón, P., Domínguez, H., and Parajó, J.C. (2006). Advances in the manufacture, purification and applications of xylooligosaccharides as food additives and nutraceuticals. Process Biochem. 41: 1913–1923, https://doi.org/10.1016/j.procbio.2006.05.011.

    • Crossref
    • Export Citation
  • Myerly R.C., Nicholson, M.D., Katzen, R., and Taylor, J.M. (1981). The forest refinery. Chemtech. 11: 186–192.

  • Oinonen, P., Krawczyk, H., Ek, M., Henriksson, G., and Moriana, R. (2016). Bioinspired composites from cross-linked galactoglucomannan and microfibrillatedcellulose: thermal, mechanical and oxygen barrier properties. Carbohyd. Polym. 136: 146–153, https://doi.org/10.1016/j.carbpol.2015.09.038.

    • Crossref
    • Export Citation
  • Peng F., Peng P., Xu F., and Sun RC. (2012). Fractional purification and bioconversion of hemicelluloses. Biotechnol. Adv. 30: 879–903, https://doi.org/10.1016/j.biotechadv.2012.01.018.

    • Crossref
    • PubMed
    • Export Citation
  • Persin, Z., Stana-Kleinschek, K., Foster, T.J., Van Dam, J.E.G., Boeriu, C.G., and Navard, P. (2011). Challenges and opportunities in polysaccharides research and technology: the EPNOE views for the next decade in the areas of materials, food and health care. Carbohyd. Polym. 84: 22–32, https://doi.org/10.1016/j.carbpol.2010.11.044.

    • Crossref
    • Export Citation
  • Pranovich A., Holmbom B., and Willför S. (2016). Two-stage hot-water extraction of galactoglucomannans from spruce wood. J. Wood Chem. Technol. 36: 140–156, https://doi.org/10.1080/02773813.2015.1104543.

    • Crossref
    • Export Citation
  • Rivas, S., González-Muñoz, M., Vila, C., Santos, V., and Parajó, J.C. (2013). Manufacture of levulinic acid from pine wood hemicelluloses: a kinetic assessment. Ind. Eng. Chem. Res. 52: 3951–3957, https://doi.org/10.1021/ie3018725.

    • Crossref
    • Export Citation
  • Sanglard, M. (2013). Production simultanée de fibres cellulosiques blanchies et de polyxylosides d'alkyle dans le cadre d'une bioraffinerie papetière. PhD Thesis of University Grenoble Alpes, France.

  • Silva, A., Marcelino, H., Gomes, M., Oliveira, E., Nagashima, T., and Egito, E. (2012). Xylan, a promising hemicellulose for pharmaceutical use. In: Verbeek, C.J.R. (Ed.), Products and applications of biopolymers. InTech, Rijeka. pp. 61–84.

  • Singh, R.D., Banerjee, J., and Arora, A. (2015). Prebiotic potential of oligosaccharides: a focus on xylan derived oligosaccharides. Bioact. Carbohydr. Diet. Fibre. 5: 19–30, https://doi.org/10.1016/j.bcdf.2014.11.003.

    • Crossref
    • Export Citation
  • Standards: Tappi standard. (2000). UM 250. Acid-soluble lignin in wood and pulp.

  • Tarasov, D., Leitch, M., and Fatehi, P. (2018). Flow through autohydrolysis of spruce wood chips and lignin carbohydrate complex formation. Cellulose 25: 1377–1393, https://doi.org/10.1007/s10570-017-1643-9. In press.

    • Crossref
    • Export Citation
  • Teleman, A., Lundqvist, J., Tjerneld, F., Stålbrand, H., and Dahlman, O. (2000). Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing 1H and 13C NMR spectroscopy. Carbohyd. Res. 329: 807–815, https://doi.org/10.1016/S0008-6215(00)00249-4.

    • Crossref
    • Export Citation
  • Timell, T.E., and Syracuse, N.Y. (1967). Recent progress in the chemistry of wood hemicelluloses. Wood Sci. Technol 1: 45–70, https://doi.org/10.1007/BF00592255.

    • Crossref
    • Export Citation
  • Tunc, M.S., and Van Heiningen, A.R.P. (2008). Hydrothermal dissolution of mixed southern hardwoods. Holzforschung 62: 539–545, https://doi.org/10.1515/HF.2008.100.

  • Xu, C., Leppänen, A.-S., Eklund, P., Holmlund, P., Sjöholm, R., Sundberg, K. and Willför, S. (2010). Acetylation and characterization of spruce (Picea abies) galactoglucomannans. Carbohyd. Res. 345: 810–816, https://doi.org/10.1016/j.carres.2010.01.007.

    • Crossref
    • Export Citation
Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

Holzforschung is an international scholarly journal that publishes cutting-edge research on the biology, chemistry, physics and technology of wood and wood components. High quality papers about biotechnology and tree genetics are also welcome. Rated year after year as one of the top scientific journals in the category of Pulp and Paper (ISI Journal Citation Index), Holzforschung represents innovative, high quality basic and applied research.

Search