Solution of a Moving Boundary Problem for Soybean Hydration by Numerical Approximation

  • 1 Department of Mathematics, Tekirdag Namik Kemal University, Degirmenalti, Tekirdag, Turkey
  • 2 Department of Mathematics, Ege University, Bornova, Izmir, Turkey
Seda Gulen
  • Corresponding author
  • Department of Mathematics, Tekirdag Namik Kemal University, Degirmenalti, Tekirdag, 59030, Turkey
  • Email
  • Search for other articles:
  • degruyter.comGoogle Scholar
and Turgut Ozis

Abstract

Mass or heat transfer may cause volume variation, and the food hydration model is one of them that undergoes hydration (or drying) conveying volume change. In this paper, the numerical approximate solution based on an integral method has been presented for soybean hydration model. Trace of the moving boundary and unknown moisture content at the center of the grain have been determined. The obtained results are well matched with numerical solutions in the literature.

  • [1]

    P. Geervani and F. Theophilus, Effect of home processing on the protein quality of selected legumes, J. Food Sci. 45 (1980), 707–710.

    • Crossref
    • Export Citation
  • [2]

    W. Y. Lo, K. H. Steinkraus, D. B. Hand, L. R. Hackler and W. F. Wilkens, Soaking soybeans before extraction as it affects chemical composition and yield of soymilk, Food Technol. 22 (1968), 1188–1190.

  • [3]

    H. L. Wang, E. W. Swain, C. W. Hesseltine and H. D. Heath, Hydration of whole soybeans affects solids losses and cooking quality, J. Food Sci. 44 (1979), 1510–1513.

    • Crossref
    • Export Citation
  • [4]

    M. R. Coutinho, W. A. dos, S. Conceição, P. R. Paraˊso, C. M. G. Andrade, E. S. Omoto, R. M. M. Jorge, R. M. Filho, L. M. M. Jorge, Application of the Hsu model to soybean grain, Food Sci. Technol. 30(1) (2010), 19–29.

    • Crossref
    • Export Citation
  • [5]

    M. Peleg, An empirical model for the description of moisture sorption curves, J. Food Sci. 53(4) (1988), 1216–1219.

    • Crossref
    • Export Citation
  • [6]

    B. P. N. Singh and S. P. Kulshrestha, Kinetics of water sorption by soybean and pigeonpea grains, J. Food Sci. 52(6) (1987), 1538–1542.

    • Crossref
    • Export Citation
  • [7]

    P. A. Sopade and J. A. Obekpa, Modelling water absorption in soybean, cowpea and peanuts at three temperatures using Peleg’s equation, J. Food Sci. 55(4), 1084–1087.

    • Crossref
    • Export Citation
  • [8]

    Z. Pan and W. Tangratanavalee, Characteristic of soybeans as affected by soaking conditions, LWT-Food Sci. Technol. 36(1) (2003), 143–151.

    • Crossref
    • Export Citation
  • [9]

    A. Gowen, N. Abu-Ghannam, J. Frias and J. Oliveira, Influence of the pre-blanching on the water absorption kinetics of soybeans, J. Food Eng. 78(3) (2007), 965–971.

    • Crossref
    • Export Citation
  • [10]

    M. R. Coutinho, W. A. S. Conceição, E. S. Omoto, C. M. G. Andrade and L. M. M. Jorge, New model of lumped parameters applied to grain hydration, Ciencia e Technologia de Alimentos 27(3) (2007), 451–455.

  • [11]

    D. J. Nicolin, R. M. Neto, P. R. Paraˊso, R. M. M. Jorge and L. M. M. Jorge, Analytical solution and experimental validation of a model for hydration of soybeans with variable mass transfer coefficient, J. Food Eng. 149 (2015), 17–23.

    • Crossref
    • Export Citation
  • [12]

    K. H. Hsu, A diffusion model with a concentration-dependent diffusion coefficient for describing water movement legumes during soaking, J. Food Sci. 48(2) (1983), 618–622.

    • Crossref
    • Export Citation
  • [13]

    M. R. Coutinho, E. S. Omoto, W. A. D. S. Conceição, C. M. G. Andrade and L. M. M. Jorge, Modeling of the soybean grains hydration by a distributed parameters approach, Int. J. Food Eng. 5(3) (2009). Article 11.

  • [14]

    D. J. Nicolin, M. R. Coutinho, C. M. G. Andrade and L. M. M. Jorge, Hsu model analysis considering grain volume variation during soybean hydration, J. Food Eng. 111(3) (2012), 496–504.

    • Crossref
    • Export Citation
  • [15]

    D. J. Nicolin, R. M. M. Jorge and L. M. M. Jorge, Stefan problem approach applied to the diffusion process in grain hydration, Transp. Porous Media. 102(3) (2014), 387–402.

    • Crossref
    • Export Citation
  • [16]

    D. J. Nicolin, R. M. M. Jorge and L. M. M. Jorge, Evaluation of distributed parameters mathematical models applied to grain hydration with volume change, Heat Mass Transfer. 51(1) (2015), 107–116.

    • Crossref
    • Export Citation
  • [17]

    D. J. Nicolin, G. E. C. da Silva, R. M. M. Jorge and L. M. M. Jorge, Numerical solution of a nonlinear diffusion model for soybean hydration with moving boundary, Int. J. Food Eng. 12(5) (2015), 587–595.

  • [18]

    D. J. Nicolin, R. M. M. Jorge and L. M. M. Jorge, Moving boundary modeling of conventional and transgenic soybean hydration: Moisture profile and moving front experimental validation, Int. J. Heat Mass Transfer. 90 (2015), 568–577.

    • Crossref
    • Export Citation
  • [19]

    C. Engels, M. Hendrickx, S. de Samblanx, I. de Gryze and P. Tobback, Modeling water diffusion during long-grain rice soaking, J. Food Eng. 5(1) (1986), 55–73.

    • Crossref
    • Export Citation
  • [20]

    S. Sayar, M. Turhan and S. Gunesekaran, Analysis of chickpea soaking by simultaneous water transfer and water–starch reaction, J. Food Eng. 50(2) (2001), 91–98.

    • Crossref
    • Export Citation
  • [21]

    A. Dutta, A. Chanda and R. Chakraborty, A linear driving force (LDF) approximation of moisture diffusion kinetics in white rice, Int. J. Food Eng. 4(8) (2008). Article 2.

  • [22]

    S. H. Lin, Water uptake and gelatinization of white rice, LebensmittelWissenschaft und – Technologie 26(3) (1993), 276–280.

  • [23]

    S. Gulen and T. Ozis, Solution of Hsu model by Crank-Nicolson method and Splitting technique, Bull. Int. Math. Virtual Inst. 8 (2018), 431–437.

  • [24]

    S. Gulen and T. Ozis, Fourth order compact finite difference scheme for soybean hydration model with moving boundary, Bull. Int. Math. Virtual Inst. 6 (2016), 227–239.

  • [25]

    S. Gulen and T. Ozis, Compact finite difference schemes for soybean hydration model as Stefan Problem, NTMSCI 6(2) (2018), 184–199.

  • [26]

    M. R. Coutinho, E. S. Omoto, C. M. G. Andrade and L. M. M. Jorge, Modeling and validation of soya bean hydration, Ciencia e Tecnologia de Alimentos 25(3) (2005), 603–610.

  • [27]

    M. R. Coutinho, W. A. D. S. Conceição, E. S. Omoto, C. M. G. Andrade and L. M. M. Jorge, New model of lumped parameters applied to grain hydration, Ciencia e Tecnologia de Alimentos 27(3), 451–455.

  • [28]

    A. K. Verma, S. Chandra and B. K. Dhindaw, An alternative fixed grid method for solution of the classical one-phase Stefan problem, Appl. Math. Comput. 158(2) (2004), 573–584.

  • [29]

    S. L. Mitchell and M. Vynnycky, Finite-difference methods with increased accuracy and correct initialization for one-dimensional Stefan problems, Appl. Math. Comput. 215(4) (2009), 1609–1621.

  • [30]

    F. Yigit, One-dimensional solidification of pure materials with a time periodically oscillating temperature boundary condition, Appl. Math. Comput. 217(14) (2011), 6541–6555.

  • [31]

    S. L. Mitchell, M. Vynnycky, I. G. Gusev and S. S. Sazhin, An accurate numerical solution for the transient heating of an evaporating spherical droplet, Appl. Math. Comput. 217(22) (2011), 9219–9233.

  • [32]

    T. E. Lee, M. J. Baines and S. Langdon, A finite difference moving mesh method based on conservation for moving boundary problems, J. Comput. Appl. Math. 288 (2015), 1–17.

    • Crossref
    • Export Citation
  • [33]

    J. V. Miller, K. W. Morton and M. J. Baines, A finite element moving boundary computation with an adaptive mesh, J. Inst. Math. Appl. 22(4) (1978), 467–477.

    • Crossref
    • Export Citation
  • [34]

    S. G. Ahmed, An approximate method for oxygen diffusion in a sphere with simultaneous absorption, Int. J. Numer. Methods Heat Fluid. Flow 9(6) (1999), 631–643.

    • Crossref
    • Export Citation
  • [35]

    J. Caldwell and C. C. Chen, Spherical solidification by enthalpy method and heat balance integral method, Appl. Math. Modell. 24(1) (2000), 45–53.

    • Crossref
    • Export Citation
  • [36]

    S. Catal, Numerical approximation for the oxygen diffusion problem, Appl. Math. Comput. 145(2-3) (2003), 361–369.

  • [37]

    N. Sadoun, E. K. Si-Ahmed and P. Colinet, On the refined integral method for the one-phase Stefan problem with time dependent boundary conditions, Appl. Math. Modell. 30(6) (2006) 531–544.

    • Crossref
    • Export Citation
  • [38]

    S. Kutluay, A. S. Wood and A. Esen, A heat balance integral solution of the thermistor problem with a modified electrical conductivity, Appl. Math. Modell. 30(4) (2006), 386–394.

    • Crossref
    • Export Citation
  • [39]

    N. Sadoun, E. K. Si-Ahmed and P. Colinet, On the Goodman heat-balance integral method for Stefan-like problems: Further considerations and refinements, Thermal Sci. 13(2) (2009), 81–96.

    • Crossref
    • Export Citation
  • [40]

    S. L. Mitchell and T. G. Myers, Application of standard and refined heat balance integral methods to one-dimensional Stefan problems, SIAM Rev. 52(1)(2010), 57–86.

    • Crossref
    • Export Citation
  • [41]

    J. Crank, Free and moving boundary problems, pp. 425, Clarendon Press, Oxford (1984).

  • [42]

    P. E. Viollaz and C. Suarez, An equation for diffusion in shrinking or swelling bodies, J. Polymer Sci., Polym. Phys. Ed. 22(5) (1984), 875–879.

    • Crossref
    • Export Citation
  • [43]

    P. E. Viollaz, C. O. Rovedo and C. Suarez, Numerical treatment of transient diffusion in shrinking or swelling solids, Int. Commun. Heat Mass Transfer. 22(4) (1995), 527–538.

    • Crossref
    • Export Citation
  • [44]

    P. E. Viollaz and C. O. Rovedo, A drying model for three-dimensional shrinking bodies, J. Food Eng. 52(2) (2002), 149–153.

    • Crossref
    • Export Citation
  • [45]

    M. J. Davey, K. A. Landman, M. J. McGuinness and H. N. Jin, Mathematical modeling of rice cooking and dissolution in beer production, AIChE J. 48(8) (2002), 1811–1826.

    • Crossref
    • Export Citation
  • [46]

    M. J. McGuinness, C. P. Please, N. Fowkes, P. McGowan, L. Ryder and D. Forte, Modelling the wetting and cooking of a single cereal grain, IMA J. Manage. Math. 11(1) (2000), 49–70.

    • Crossref
    • Export Citation
  • [47]

    S. I. Barry and J. Caunce, Exact and numerical solutions to a Stefan problem with two moving boundaries, Appl. Math. Modell. 32(1) (2008), 83–98.

    • Crossref
    • Export Citation
  • [48]

    T. R. Goodman, The heat balance integral and it’s application to problems involving a change of phase, Trans. - ASME J. Heat Transfer. 80 (1958), 335–345.

  • [49]

    T. R. Goodman, Application of integral methods in transient non-linear heat transfer, in: T. F. Irvine Jr. and J. P. Hartnett (Eds.), Advances in heat transfer, vol.1, pp. 51–122, Academic Press, New York (1964).

    • Crossref
    • Export Citation
  • [50]

    W. C. Reynolds and T. A. Dolton, The use of integral methods in transient heat transfer analysis. Department of Mechanical Engineering Report No. 36, Stanford University, Stanford, California, Sept. 1 (1958).

  • [51]

    D. Langford, The heat balance integral method, Int. J. Heat Mass Transfer. 16(12) (1973), 2424–2428.

    • Crossref
    • Export Citation
  • [52]

    B. Noble, Heat balance method in melting problems, in: J. R. Ockendon and W. R. Hodgkins (Eds.), Moving boundary problems in heat flow and diffusion, pp. 208–209, Clarendon Press, Oxford (1975).

  • [53]

    G. E. Bell, A refinement of the heat balance integral method applied to a melting problem, Int. J. Heat Mass Transfer. 21(11) (1978), 1357–1362.

    • Crossref
    • Export Citation
  • [54]

    R. S. Gupta and N. C. Banik, Approximate method for the oxygen diffusion problem, Int. J. Heat Mass Transfer. 32(4) (1989), 781–783.

    • Crossref
    • Export Citation
  • [55]

    J. Crank, The mathematics of diffusion, second ed., pp. 129–135, Clarendon Press, Oxford (1975).

Purchase article
Get instant unlimited access to the article.
$42.00
Log in
Already have access? Please log in.


or
Log in with your institution

Journal + Issues

The International Journal of Nonlinear Sciences and Numerical Simulation publishes original papers on all subjects relevant to nonlinear sciences and numerical simulation. The journal is directed at researchers in nonlinear sciences, engineers, and computational scientists, economists, and others, who either study the nature of nonlinear problems or conduct numerical simulations of nonlinear problems.

Search